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ABSTRACT

The peiturbation method proposed by Professor Hui is
described. The method gives exact solutions for the perturbed
flow over both sides of a flat plate which is oscillating
with small amplitude and frequency at large angles of attack

in steady supersonic/hypersonic inviscid flow provided that

the shock remains attached. Using the strip theory concepts
these solutions are extended to study the dynamic stability
in pitch of a flat, periodically oscillating wing or arbi-
trary planform shape, at large angles of attack. Finally,
Hui's perturbation method is extended to include the effects

of upstream disturbances on a stationary wedge.
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I. INTRODUCTION

This thesis deals with oscillating bodies in inviscid,
steady or unsteady, supersonic/hypersonic flow. Its sub-
ject matter may be divided into three main topics.

The first topic is covered in Sections II and III.A.1,2
and constitutes the background material for the other two.
In Section II the Eulerian governing equations and boundary
conditions for unsteady flow are formulated and the two-
dimensional shock and expansion steady flow results are given.
The basic elements of the linearized potential flow theory
are also included in this section. In Sections III.A.l1,2 a
perturbation method proposed by Professor Hui is presented
[Ref. 6,7,8].l The method uses as a basis the assumption
that the unsteady flow over an oscillating flat plate, with
attached shock waves at an arbitrary angle of attack, is a
small perturbation from the steady reference flow and, for
small amplitudes of periodic oscillations, it gives closed
form solutions for the flowfield quantities in the disturbed
flow regions.

The second topic is covered in Sections III.A.3,B,C
(Ref. 5]. In Section III.A.3 the closed form solutions over

the upper and lower sides of the oscillating plate are combined

1Professor of Applied Mathematics, University of Waterloo,
Ontario, Canada. NPS, Department of Aeronautics, Visiting
Professor in the period January-August 1980.
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and the strip theory approximation is employed to calculate

the necessary quantities in the disturbed flow regions over

a flat wing of arbitrary planform shape. The in-pitch stability

derivatives for the three-dimensional wing are then obtained

in closed form and the results are compared with other exist-

ing theories. In Section III.C a comparison of these results

with linearized potential flow theory results is included

while, in Section III.B, the fundamentals of the linearized

theory, as applied to three-dimensional wings, are presented.
Finally, the third topic is covered in Section IV. Based

on the same perturbation method this topic introduces upstream

unsteadiness in the flow and its effects on stationary bodies

are obtained. The upstream unsteadiness is of a fairly general

periodic form to give the solution in the flowfield generated

by a formation of bodies provided that the body originating

shocks are not crossing and the expansion fan regions are

not overlapping. An extension to the case of oscillating

bodies is readily possible.

12




II. UNSTEADY INVISCID FLOW THEORY

To describe the fluid motion two methods are available:
the Lagrangian method and the Eulerian method. In both
methods the fluid is regarded as a continuum, i.e., its
matter is assumed to be continuously distributed.

In the first method the fluid is assumed to be divided
into infinitesimally small regions called fluid elements or
fluid particles. The so-called particle point of view is
then adopted and description of the fate of each individual
fluid particle is sought. To determine the unknowns asso-
ciated with each fluid particle, e.g., its position coor-
dinates, density etc., a system of eﬁuations is set up by
applying to each fluid particle natural laws such as Newton's
second law of motion and conservation of mass and energy.
These equations are known as the Lagrangian equations of
fluid motion.

Although the Lagrangian description appears to be a
natural way to apprcach the problem of fluid motion, the
Eulerian description is preferred in general since it gives
more insight into the problem, it is much simpler and in
most cases one is not interested in the fate of each individual
fluid element but rather in the properties of the fluid at a
certain point of the flow field at a certain time.

In the Eulerian method attention is focused on the vari-

ous points of the space filled by the flowing fluid and a

13

.




L e '------.-..--.-.-.--IlIIlIllllIlIlIlIIlllllII!lll!=!==l

description of what is happening at each of these pbints,
in terms of quantities of interest such as pressure, density
and velocity is sought. The flow éuantities of interest
are assumed to be functions of space and time, i.e., to be
scalar or vector fields. Thus in the so-called field point
of view adopted here the fluid flow is characterized by the
fields of velocity, pressure, density and so on and a fluid
element occupying a certain point at a certain time assumes
for its properties the values that are appropriate to that
point at that time. To solve for these fields a system of
equations is again set up by using, as before, natural laws
such as Newton's second law of motion and conservation of
mass and energy. These equations are known as the Eulerian
equations of fluid motion.

Throughout this thesis the Eulerian approach is used.

In the next subsection the major steps in deriving the
Eulerian equations of fluid motion are indicated and the
equations are presented in the form in which they will be

used later on.

A. UNSTEADY EULER EQUATIONS

The Eulerian equations of fluid motion, called hereafter
simply equations of motion, may be set up either in differen-
tial form or in integral form. Furthermore they may be
developed either from the point of view of a certain fluid
region that contains the same fluid elements for all times

(control mass approach) or from the point of view of a fixed

)
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volume in space through which different fluid elements flow
through (control volume approach).

In what follows, the equations of motion are set up in
the differential form from the point of view of an infinitesi-
mal fluid region.

In this derivation we will then naturally be involved with
the calculation of the time rate of change of flow quantities
as we follow the fluid element around, the so-called material
derivatives of gquantities.

A physical interpretation of the material derivative and
..ts components is briefly included.

1. Material Derivative

Consider a fixed coordinate system and a fluid ele~

L Let Q(r,t) denote

ment situated at point r at some time t.
some fluid property Q of interest (density, velocity, etc.)
associated with the point r at time t. The fluid element
situated there (see Fig. l.l1l) will assume for its corresponding
property Q the value Q(¥,t). In a short time interval At

the element moves through a distance AS = VAt where V is

its velocity at r and t. The element will then assume for

Q the value appropriate to its new position r +VAt at time

t +At. If we denote this value as Q(r +Vat, t +At), the

change of Q in the time interval At is

AQ = Q(Tr +VAt,t +At) - Q(T,t)

1

Barred quantities denote vector quantities.

15




and the rate of change of Q following the element around,
D( )

usually denoted by Dt is
DQ _ ... Q(T+VAt,t+At) - Q(T,t)
= = lim —
Dt AE0 it

Expanding Q(r+VAt,t+At) in a Taylor series we get

2
Q(T+VAL, t+At) = QI(T,t) + (%%__ At + (3—%)- st v ...
r,t 3t” r,t

2
3Q 3 Q 2
+ (gg)EItVAt + (g;z);'t(VAt) + ...

where s denotes distance in the direction of the velocity
V at point r and time t.
| Using the Taylor series expansion the rate of change of
DQ

Q, e becomes

(1.1)

UlU
o
W
S
+
I
<

where the derivatives are evaluated at r and t.

The total rate of change of any property Q is thus com-
posed of two parts.

To see the physical interpretation of each of these terms
consider a flow field which is at any instant spacewise uni-
form but varies from instant to instant and a second flow
field which is steady but not uniform spacewise. Consider
also a fluid element in these fields which in a small time
interval 6t is moving from position T in the flow field to

position T+Vst.

16
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AS =VAt

path

(F+AF) at (te+At)

Fig. 1.1. Illustration of local, convective and
material derivatives.

The change of a property Q of the fluid element moving
in the first field described above is %%Gt and the rate at
which the property Q is changing locally at the point r is
%%u This local rate of change is known as the local deriva-
tive and is the first component of the total rate of change
in equation (1.1).

The change of a property Q of the fluid element moving
in the second flow field described above is (%%)Vét. This
change which is called convective change is necessary since
the element has to have an appropriate value for its property
Q at its new position r+Vét. The rate of change of the
property is (%%)V and is known as the convective derivative.

It is the second component of the total rate of change in

equation (1.1).

17




The sum of the local derivative and the convective
derivative as given by equation (1.l) is known as the total
or substantial or material derivative. The last term is
probably more descriptive since the derivative is constructed
following a certain material element around. This term will
be used hereafter.

Recalling that %% represents the derivative of Q with

respect to distance in the direction of the velocity V we can

write equation (1.l) in the following form
b . 390, .
ot st (e,-gradQ)Vv

where E; is the unit vector in the direction of V or simply

DQ _ 39 . w.
5t = 3t + V- gradQ (1.2)

where Q can be a scalar or a vector quantity.
If Q is vector quantity, i.e., Q = A the convective

derivative V-gradA can be expanded using the formula

: Vegraddh = L grad(V:E) -V xcurld -A xcurl V

7[

- curl (V xA) +V(divA) -A* (divV)] (1.3)

2. Equations of Motion

We will now set up the basic equations that govern
the unsteady motion of an inviscid, compressible fluid. We
initially regard as unknowns the velocity field V(r,t), the

pressure field p(r,t) and the density field po(r,t). We

18




want to establish relationships between these fields by
applying to a certain fluid element the basic laws of nature;
Newton's second law of motion, law of conservation of mass,
law of conservation of energy.
a. Momentum Equation
Let us consider an infinitesimally small fluid

element situated at position r at time t (Fig. 1.2). 1If

V and o are the velocity and density of the element at r and
t and if §v denotes the volume of the element, then the mass
and the momentum of the element are pdv and pdvV respectively.
Let us also denote by F the total force acting on the element
at time t,

Newton's second law of motion which is applicable
to any mechanical system states that "at any instant, the
rate of change of momentum of a system is equal to the resultant
of all forces that are acting on the system at that instant".
By applying the above law to the fluid element considered
and by noting that the rate of change of momentum of the ele-
ment is simply the material derivative of the momentum we

get

D — =
b—t-(OGVV) = F
Since the mass of the element pdv remains constant the

above equation becomes

DV
POV Bt =

|

(1.3.1)

19
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[ Figure 1.2. Fluid Zlement

The total force ! :s the resultant of the so-

called surface forces and body forces.

1 The body fcrces are forces that act throughout the

body of the fluid such as the gravity force. These forces

will be assumed to be small and will be neglected in this

Ty

thesis.

The surface forces on the other hand are internal
forces in the nature of actions and reactions across the sur-
fact that separates the fluid element from its neighboring
fluid elements. For a frictionless or inviscid fluid the
surface forces are simply pressure forces that act normal to

the surface of the fluid element, Their resultant is

- nds
e

20
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where p is the pressure of the element, §S its total surface
and n the outward unit normal to the surface.

According to the integral definition of the gradi-
ent of a scalar function the resultant of the pressure forces

which is the total force F can be written

F = -QIgﬁpﬁaS = =48v gradp
)

Equation (1.3.1) then becomes

DV _
e - gradp (1.4)

This equation of motion is one of the fundamental equations
of fluid dynamics and is called Euler's Egquation. It repre-
sents a system of three scalar eguations for the five un-
knowns--the pressure, the density and the three scalar com-
ponents of velocity.
b. Mass Equation

Consider a fluid element situated at point r at
time t with volume §v (Fig. 1.3). The mass of the element
is pdv. The law of conservation of mass states that "the
mass of any fluid element remains constant as it moves about"
even though, in general, its shape, volume and density may
change.

Applying the law of conservation of mass to the
element considered is thus equivalent to setting the rate
of change of mass equal to zero or setting the material

derivative of mass equal to zero. This gives

21
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or
sv = 0 (1.5)

The material derivative of the volume of the element may be
expressed in terms of the velocity field. Let the surface

of the element at time t be &S and let it in a time inter-

val §t grow and become 6s1 as shown in (Fig. 1.3). The

change in volume of the element is equal to the volume swept

by the surface of the element during the time §t. 1If n is

the outward normal to the original surface the net volume swept

outward by 6S in time dt is given by

Figure 1.3. Change in volume of a fluid element

22




o= - =

g 75tnds
3

where V is the velocity.
The material derivative of the volume of the
element is then if we also employ the definition of the

divergence of a vector

D S = .

= 0v = g;fv-nds = dv div V
€ 5

Equation (1.5) then becomes

o

ﬁ%-i-pdiv\—l = 0 (1.6)
This equation is known as the equation of conservation of
mass, or simply, the equation of mass, or the equation of
continuity. It is a relation between the velocity and den-
sity fields only, Since it does not involve any dynamical
quantities (such as pressures or forces) it is a kinematical
relation.
¢. Enerqgy Equation

The law of conservation of energy expresses the
balance of energy exchanges that take place between a system
and its surroundings. A fluid in motion may be regarded
as a thermodynamic system characterized by the usual thermo-
dynamic variables such as entropy, internal energy, etc.
We will assume that the fluid is non-heat conducting and
also that for a fluid element the only possible energy ex-

change process is work done by the surface forces and body
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forces. The law of conservation of energy applied to a
fluid element may be expressed as follows.

The rate of increase of energy E of a fluid
element = the rate of work Wl done by the surface forces and

the rate of work w2 done by the body forces. Symbolically
(L.7)

We will assume, as before, that the body forces can be
neglected and that the fluid is inviscid. The only possible
energy exchange is then work done by the pressure forces.

The rate of this work is
W, = -ppnds-v = -%ij'ﬁdS

where 8S as before, is the surface of the element, n is the
outward unit normal and p, V are the pressure and velocity
of the fluid element.

According to the definition of the divergence of

a vector we can write
W, = - g%fpv'ﬁas = =4§v div(pV)
)

On the other hand the energy E of the fluid element
is the sum of its kinetic energy and internal energy. We
specify the internal energy of the fluid by the scalar field
e(r,t) which denotes the internal energy per unit mass at

point r and time t. Then since the kinetic energy per unit




2
mass is %T the total energy of the fluid element with mass

pdv is
2
E = pévie + %T)

Equation (1.7) can then be expressed as
D 2 =
B—(e-+7r) = =~ div(pV) (1.8)

Equation (1.8) is referred to as the equation of conserva-
tion of energy or simply the energy equation. An alternative

form of this equation is

= ~pdiv ¥ (1.9)

el
9|9
o

which can be found by subtracting from (1.8) the so-called

equation of mechanical energy
ol _E(_—) = - V-.gradp

The equation of mechanical energy is formed by multiplying
both sides of Euler's equation (1.4) by V.

The energy equation (1.8) has introduced the
internal energy of the fluid as an additional unknown in the
formulation of the governing equations. The list of unknowns
includes the three scalar components of velocity, and also
the pressure, density and internal energy of the fluid, while

there are five equations available.
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At this point we assume we are dealing with a

perfect gas and introduce the equation of state for a per-

fect gas

p = PoRT (1.10)

as a sixth relation between the unknowns.
We specify the temperature T of the fluid as a
scalar field T(r,t) and since we are dealing with a perfect 1

gas express the internal energy e of the fluid by the relation

e = C_T (1.11)

where C,, is the specific heat at constant volume of the gas.
From equations (1.9), (1.10) and (1.ll) we can

find that the energy equation for a perfect gas may be

written in the following form which will be used hereafter

D =
Ef(fé) = 0 (1.12)

Summarizing we state that the basic equations that govern
the unsteady motion of a non-heat conducting, inviscid, per-
fect gas with constant specific heats are equations (1.4),
(1.6) and (1.12). These equations are rewritten below for

easy future reference.

(continuity) %% + Ve(pV) = 0 (1a)
(momentum) %% + V.gradv + %? = 0 (1b)
d T-v(L) =
(energy) E‘E(f?) + Tk 0 (lc)

5 ,
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3. Boundary Conditions

Physical conditions that should be satisfied on
given boundaries of the fluid are known as boundary condi-
tions. There are several types of boundaries and consequently
there are various possibilities for the boundary conditions.

We will consider two types of boundaries which are
of main importance in this thesis, (1) "the solid-fluid
boundary" where the fluid is bounded by a solid surface and
(2) "the fluid-shock-fluid boundary" where two regions of the
same fluid in different states of motion are separated by a
flow discontinuity. The possibility of an infinitely weak
discontinuity will not be excluded.

The nature and number of the boundary conditions depend
also on the form of the differential eguations that govern
the motion of the fluid. In this sense there are differences
between the boundary conditions for a viscous fluid or an
inviscid fluid. 1In the following the conditions for an invis-
cid fluid are considered.

a. Conditions at a Solid-fluid Boundary

We assume that the fluid is bounded by an imper-
meable solid wall and require that no fluid should cross the
solid surface. Since the surface itself may be in motion we
denote by V the velocity of the fluid and by Vg the velocity
of the surface. The relative velocity between the fluid and
the surface is V-—V;. Let the equation of the surface be
given by S(r,t) = 0. A unit normal to the surface is then

given by

27
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and the component of the relative velocity normal to the

surface is given by

g T g 3 l _. -— .

v VS) n = W[V grads VS gradS]
Now assume that an observer moves with the surface particles
that compose the solid surface. The observer cannot observe
any change in the function S(r,t) considered as a scalar
field. This means that the total rate of change of S(r,t),

following a particle of the surface around, is zero, i.e.,

as T . -
s—t- + VS gradS = 0

The component of the relative velocity normal to the sur-

face then becomes

T~ ‘_ = l a—s— —-
(V‘Vs) n = W(Bt + V-grads) (1.13)

The condition of impermeability of the solid surface is

(V-V,)nm = 0
or
DS _ 35 . - = -
5F = s+ Vgrads = 0 At S(T,t) =0 (1.14)

If the solid-fluid boundary is formed by the surface of a

stationary rigid solid the above equation reduces to
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Vegrads = 0 At S(r) = O (1.15)

It is pointed out here that the condition for-
mulated above states that at each point of the solid-fluid
boundary the normal to the surface component of the relative
velocity between the fluid and the solid must vanish. Thus
for an inviscid fluid nothing can be said about the tangen-
tial to the surface component of the relative velocity which
may or may not be zero. 1In short the so-called no-slip con-
dition does not apply to an inviscid fluid.

b. Conditions at the Fluid-Shock-Fluid Boundary

Consider one dimensional adiabatic constant-area
flow of a perfect gas through a discontinuity (Figure l.4a).
Assume that the flow quantities in regions 1 and 2 are con-
stant throughout the regions. The equations of continuity,
momentum and energy between cross sections 1 and 2 give

[Ref. 1: pp. 55,56]

u

1% Poly
2 2
Pp ¥ PY = Pyt Pouy
2 2
u p u p
'y o 2, xy T2
2 + Y—}r Dl T + Y-l 02

These equations hold as long as sections 1 and 2 are
chosen outside the discontinuity region. The discontinuity
region may be assumed to be vanishingly thin and sections 1

and 2 may be brought arbitrarily close together. 1In this
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Figure l.4a. Change of conditions across a normal
shock in a constant area duct.

Steady flow.

Figure l.4b. Change of conditions across an arbitrary
ciscontinuity surface S(r,t). Unsteady flow
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case the requirement of a constant area duct is dropped and
the equations apply locally across the discontinuity. Con-
sidering the discontinuity as a boundary separating regions
l and 2 we may refer to equations above as boundary conditions

at the discontinuity and write symbolically

[pul] = 0 (1.16)
[ou2 +p; =0 T (1.17)
[“2 + LB = o (1.18)
=2 Y-Iop y

where the square brackets denote the change in the enclosed

quantity across the discontinuity.

A generalization of the simple one-dimensional !
flow problem considered leads to the well known Rankine-
Hugoniot conditions in the form that will be used in this
thesis. Consider two regions in space separated by a surface
S(r,t). Assume that adiabatic flow of an inviscid, perfect
gas is established from region 1 to region 2 (Figure 1l.4b).
Assume also that the surface S(r,t) represents a discontinuity.
In general the equation of the discontinuity is not known
a priori but will be found as part of the solution of the
flow problem. Thus the boundary is a so-called free boundary.

Let the flow qguantities in region 1 be Vi(?,t),
pl(f,t), DI(F,t) and in region 2 VZ(F,t), pz(?,t), DZ(F,t).
The boundary conditions (1.16), (1.17) and (l1.18) should apply

locally at any point of the boundary S(r,t) provided that the
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velocities u;s u, are replaced by the normal components of

velocities Vn ’ Vn . For a boundary moving with velocity
1 2

Vs the normal to the boundary components of the relative

velocities between the fluid and the free boundary are given

by formula (1.13)

_ 1 3s T .
Vn = Wr(ﬁ + Vl grads)

- 1 3S 7.
Vnz = ;Tsra—ds—r(ﬁ + V2 grads)

From equations (1.16), (1.17) and (1.18) using the same

notation we get:

At S =0
3 , , 3s =
- (continuity) [°(§E + V.Vs)j] = 0 (1.19)
§ (normal [p(%% + T-98)2% + p(vs)?] = 0 (1.20)
3 momentum)
{ (energy) [Z(Bt'+v vs) +Y-l p(VS) ] 0 (1.21)

where the square brackets denote, as before, the change in

' the enclosed quantity across the discontinuity and the symbol
- "y"* stands for "gradient".

? The conservation of tangential momentum is not
expressed by any of the equations above. To find the tan-
gential momentum equation we require that the velocity com-
ponent tangent to the discontinuity be continuocus. The

tangential velocity compcnents are given by
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where n is the outward unit normal to the surface
n=UVs = {Sx,Sy,Sz} in Cartesian coordinates. The condition
of conservation of tangential momentum then becomes if the

square bracket notation is used:

(tangential ul] _ (vl _ [w] =
momentum) S, - Sy - 2 at s =0

where ([u]l, [v], [w] denote the change of x, y and z components
of velocity across the discontinuity.

The equation above imposes two scalar conditions
at the discontinuity, as one should expect from physical
considerations. An alternative form of this equation is the

following:

(tangential

momentum) (Vv xvs] = 0 At S = 0 (1.22)

Equations (1.19), (1.2)), (1.21) and (1.22) constitute the

complete set of the Rankine~Hugoniot conditions. They are

symmetrical and therefore remain unchanged if the brackets

are taken to denote the change upstream rather than downstream

|

through the discontinuity. A definite sense of flow direction
is provided by the second law of thermodynamics, which requires
| that the entropy shall not decrease across a discontinuity.

: The change of entropy is given by [Ref. l: p. 60]:
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and the requirement stated gives the following condition

which should accompany the Rankine-Hugoniot conditions

(2nd law of [P

thermo.) ;7 2 0 at $§

"
o

(L.23)

It should be noted that so far we have avoided using the

term shock instead of discontinuity, though shocks are the
only possible physical discontinuities. This was done on
purpose since we intend to use the Rankine-Hugoniot condi-
tions across hypothetical expansion fronts (negative or expan-
sion shocks) through an iterative procedure so that in the
limit condition (1.23) should not be vioclated.

4. Shock-Expansion Flows

Unsteady flows with shock waves or expansion waves
are considered in this thesis. These unsteady flows will be
solved by first finding the corresponding steady flow solution
and then using it as a reference flow in calculating the un-
steady perturbation flow.

Since a number of exact steady flow conditions are
already available, they will be utilized as reference flows
in finding the governing equations and boundary conditions
of the corresponding unsteady flows. They include the super-
sonic uniform wedge flow and the Prandtl-Meyer expansion flow.
The results for these steady flows are stated below for easy

reference.
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a. Wedge Flow
Consider steady uniform supersonic flow past a
symmetrical two-dimensional wedge with semi-vertex angle 6
(Figure 1.5). The wedge is assumed stationary. Oblique
shocks will be formed at angles R measured from the free
stream direction. By conservation of momentum the tangential
component of velocity is continuous across the shock so that

\' Vt . Then Vn

% 2 1
relations. Since V =V
nl 1 2
shock relations can be used directly with M

and Vn are related by the normal shock
2

sin g8 and Vn = V2 sin¢$ the normal

1

M1 sinf8 and M2 replaced by M2 sin¢. The resulting relations

for the oblique shocks are

replaced by

2Ymi sinZB - {y~-1)

y+1

P2 _
P‘l

Figure 1.5. Steady supersonic flow past a stationary
wedge
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(Y-l)MisinZB +2

M% sin2¢ = 3 p)
ZyMlsin B - (y-1)
2 .2
E& _ (Y+1)M131n B8
P1 2 +(y-l)Misin28
32 - tan 8
pl tan ¢
2
From the last two relations eliminating 5o and recalling
1
that ¢ = B-6 we get
uZsin’g -1
tan 8 = cot B (1.24)
Y w2 - (Misin’s - 1)

One way to solve this equation, i.e., to find 8 for given

Ml and 8 is to express it as a cubic equation in x = cot B and
select the appropriate positive root corresponding physically
to the weak shock wave [Ref. 2: pp. 452-453]. The following

equivalent equation was used in this thesis for numerical

calculations
y=1 42, 3 _ m2_ 2 y+1 .2 _
(1 +—2 Ml) X (M1 l)cots x° + (1 +———2 Ml)x +cot 6 = 0

where x = tan B.
For attached shock waves this equation gives three
real roots for 8 and the middle one is the one corresponding

to the weak shock wave.
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A maximum deflection angle1 for given M

(beyond

1
which the shock becomes detached ) can be found from equation

(1.24) by differentiating it with respect to B and equating
to zero.
b. Prandtl-Meyer Flow

Consider steady, two dimensional, uniform super-
sonic flow over a convex corner (Figure l.6a). A turn of
the flow through a single oblique expansion wave is not
possible since this would lead to a decrease in entropy.
The flow expands isentropically through an infinite number
of centered straight Mach lines that form the so~-called
Prandtl-Meyer expansion fan. Thus upstream of the ray OB
where 6 = §_ the flow is uniform with Mach number M and
downstream of the ray OC where 6§ = el the flow is also uni-

form with Mach number M;. For angles & such that §_ < 6 < 6

b

the flow field has the same properties along any ray

8 = constant. The polar coordinate system shown has been

chosen so that ' = o + % + P(Mw) where P(M) is the Prandtl-

Meyer function

P(M) = %tan'l[umz-l)l/z] - tan"t(m?-1)172

with A = (%E%)l/z and Y the ratio of specific heats of the

gas. The Mach number Ml is given by

1For the wedge at an angle of attack o the flow deflec-
tion angles are 6+a and 6-a for the lower and upper sides
respectively.
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Figure l.6a. Steady supersonic flow over a convex corner

actual surfoce

“=_stagnant fluid region

Figure 1.6b. Expansion over a corner with a > I(M)max
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P(M;) = P(M) +a

Along any ray € in the expansion fan the Mach number pressure

and density are given by the following relations.

8 = % tan-l[A(MZ-l)l/zl

P = pm[;é;;i]Y/(Y-l)

- pw[f%#l 1/ (vy-1)
where:

B = 1+ 5E

The r- and 6-velocity components in the expansion fan are

given by

<
]

c sin 8

<
i

AC cos B

where:

/ 2 1

c = U 1 +—=
© N ;12-
It can be seen that the Prandtl-Meyer function

P (M) defined above has a maximum value for M - «», This value

is
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m
P (M)max = (v Y+DA-1)-1)

For convex corner angles a > P(M)m - P(M_ ) the streamlines behind

ax
the expansion fan behave as though the flow occurred over an
expansion of P(M)max and for an inviscid fluid a region of
stagnant fluid lies between the hypothetical position of the
body as sensed by the flow and the actual position of the
body (Figure l.6b). Whenever this occurred in numerical

calculations performed, the influence of the flow on the sur-

face of the cornerl was assumed negligible.

B. LINEARIZED POTENTIAL EQUATION

The so-called linearized theory of supersonic flow builds
up the flow produced by the motion of a body by superposi-
tion of small disturbances such as those produced by a moving
sound source. One can develop in this way relatively simple
methods for the computation of velocity and pressure distri-
butions in the field.

In the case of vortex-free flow, the equations of motion
can be reduced to equations analogous to the wave equation.

The coordinate parallel to the direction of the main flow

plays the role of the time coordinate. Hence the methods

of finding solutions of the wave equation can be used.

1We mean that in the equivalent case of a flat plate
at an angle of attack o the pressure on its upper surface
was assumed zero.
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The linearized theory however has serious limitations.

First, it gives only a first approximation since all devia-

tions from the uniform parallel flow are considered small |
and therefore additive. This is justified for very thin or

slender bodies at small angles of attack only. Second, there

are speed ranges in which the linearization of the equation

of motion even for small disturbances is not justified. For

the linearized theory to be valid the following two conditions

must be met.

(a) The perturbation velocities must be small in compari-
son to both the main stream velocity and the velocity of sound.
This condition excludes the case of very high velocities
since if the mean stream velocity is several times larger
than the sound velocity, disturbances which are small rela-
tive to the mean'stream velocity may be of the same order of
magnitude as the sound velocity. This speed range is called
the hypersonic range.

(b) The perturbation velocities must be small in comparison
to the difference of the main stream velocity and the sound
velocity. This condition excludes therange near M = 1, the
so-called transonic range.

In spite of the limitations described above the lineari- i
zation of the equations of inviscid, compressible fluids
proved to be of excellent use in developing approximate solu-
tions in the supersonic range.

There are three general methods used in the linearized

theory of supersonic aerodynamics.
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(a) The method of fundamental solutions or sources. This
method is based on the superposition of fundamental solutions

of the linearized hyperbolic equation for small perturba-

tions of a uniform supersonic flow. 1In formulating wing
problems this method uses sources and doublets located in

the plane of the wing and the strength of these singularities
is determined so that the boundary conditions applicable to
the wing planform and shape are satisfied.

(b) The methods of acoustic analogy and operational cal-
culus. In these methods the solution of the hyperbolic equa-
tion is expressed by means of Fourier and Laplace integrals
respectively. The second method is better adapted to super-~
sonic flow problems since the Laplace integrals exclude the
possibility of upstream travelling signals while in the case
of Fourier integrals one has to impose additional conditions
to secure that this possibility is excluded.

(c) The method of conical flows. This method is based on
conical flows, i.e., flows for which the velocity components
at points lying on a straight line drawn from a point chosen
A as vertex are independent of the distance from the vertex.

In this method the solution of a hyperbolic equation in three

variables is reduced to the solution of Laplace's equation or

wave eguation in two variables and the existing methods of
! conformal transformations and the theory of functions of com-
plex variables can be employed.

Methods of higher approximations, i.e., methods which

lead from the simple case of the linearized solution toward
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the exact one in successive steps, thus extending the range
of satisfactory approximation, are required whenever the
perturbation velocities are not small compared to the main
stream velocity.

In this section the concept of irrotationality will be
introduced and then the basic assumptions and steps followed
in deriving the linearized potential equation and the appli-
cable boundary conditions for the general flow problem of a
body in supersonic flow will be described. In the next sec-
tion the linearized wing problem will be described.

1. Irrotational Flows

By potential flow we mean that the velocity V is
derivable from a scalar velocity potential ¢, i.e., Vv = grado.
On the other hand the vorticity or rotation w in a fluid is
defined as w = curl V and the flow is called irrotational

if w = 0 or equivalently if

where u, v, w are the x~, y- and z- components of V.
Physically the irrotationality of the fluid means
that the fluid particles have zero moment: of momentum about

their own center-of-gravity axes or simply that they remain

parallel to themselves as they move around.
The condition of irrotationality of the flow is a
! necessary and sufficient one for the assumption of a poten-

tial flow since the mathematical identities curl grad¢ = 0




S — - "-----.-!!!IIIlIIlIIllIIIIIIlIIIIIIII_IIIIIIIIIIIIIII.‘

and div curl V = 0 show that the velocity V can then be
put in the form V = grad¢.

The irrotationality throughout a flow field can be
proved by applying the theorems of Kelvin and Stokes.

Stokes' theorem states that the area sum of the rotation over

a given area is equal to the integral of the velocity around

a curve bounding the area. Formally,

fwdh = [ curl V.42 = P V.4l
A
The line integral is called circulation and is denoted by
' Thus [ =@ V.47 = [u-dA.
As a consequence of Stokes' theorem, w = 0 if the
circulation ' vanishes for all paths wholly within a simply

connected flow region.

Kelvin's theorem on the other hand states that the

circulation I' about any contour always composed of the same
fluid particles (i.e., a fluid line) is constant in an inviscid

fluid with only conservative or irrotational body forces.

For an inviscid fluid it states that g—% = -@%P- and it reduces

to g% = 0 when there is a simple relation connecting p and

p. Physically it means that circulation I about any line
; contour remains constant in time as we move along with the
fluid.

It is a consequence of both theorems that initially
irrotational flows originating in a reservoir under uniform

stagnation conditions or from straight parallel streamlines
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will remain irrotational throughout the flow field at all

times if there are no shock waves.

2, Linearized Potential Flow Equation

In view of the above reasoning we assume that the whole
flow field is irrotational and set V = grad¢. As a result
the three unknown velocity components u, v, w are expressed

in terms of the scalar field ¢ by

By using relation (l1.3) the momentum equation (1.4)

may be written as

o 2
p(%% + grad !7 - Vxcurl V) = -gradp

or since curl V = 0 and v = gradd we may write

3¢ , v dp, _
grad(zg + = + J =) = 0

By integration we get

2
\' d
+ >+ 7? F(t)

3
3

oo

I1f we define ¢ = ¢ - [F(t)dt this equation becomes

Q
L=

' 2
~ v ) S
+ >t It = = 0

o

By differentiating this relation with respect to time

and by taking its gradient we get the following two relations,




T e ————— — : """"""'-"""'EF!!!F"""""""%!III!

if the additional relation a2 = %% for the velocity of

sound is used.

2 2

-3 (3% Vv, _ o 3
s * ) T 53t
2 2
¢ v _a
- grad(gz + —50 = 5 gradp

We now introduce continuity equation (1.6) which, since

div V = V2¢, may be written as

Q

3 ,

t

oi<|

gradp + V2¢ = 0

Ol

Introducing in this equation the last two relations from

momentum equation we get

2 2 2
2 l1.3°% v - v _
] veo ;7[527 + = * v grad(7r)] = 0 (1.25)

; Equation (1.25) is the exact non-linear differential equation
to be satisfied by the velocity potential ¢ for an unsteady,

3 inviscid, irrotational flow. Because of its strong non-
linearity, solutions have Lbeen found in very few special
cases. Thus the small disturbance concept is introduced which

leads to linearization of the equation.

We assume that the velocity vector V differs only
slightly in direction and magnitude from the free stream
velocity U, taken along the x-axis, and we define a distur-
bance velocity potential ¥ obtained from the total velocity
potential ¢ by separating out the contribution of the uniform
flow. In this way we have
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¢ = Ux + VY

The local velocity components are then given by

u = U + u', v = v', w = w'

where u', v', w' are the perturbation or disturbance veloci-

ties which can be found from

We regard all disturbance velocities small in compari-
son with U_, a and U_-a and all pressure and density changes
small in comparison with main stream pressure and density.

We also assume that the small quantities change gradually
in all directions and that time variations are not too rapid.
We now return to equation (1.25) and assume that

the linear terms in Laplace's operator are of the same order

X of magnitude. Substituting the velocity V in this equation i

and retaining first order terms only we get @

2 2 2
4 2, 1.3°Y 3%y 2 3%y, _
‘7 V7Y - ;7[5:2- + 20 T + U_ -3:2-] = 0 (1.26)

A where the second term in parenthesis is found from

1 . o_ 4 S
T 2 Bte] = 7 g2 Y 7120aYge!

and the third term in parenthesis is found from
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To complete the linearization of (1.26) we should dispose -
of the factor —%u

For st:ady flow az may be eliminated by using the
following relation which is a consequence of the first law

of thermodynamics i

az + l%l V2 = constant
For unsteady flow let a slender body move in the flow
field and denote the velocity of sound far upstream in the

undisturbed field by the constant o_. In the vicinity of the

body az will then be a variable depending on position and

can be represented by a sum of terms of the form

a2 ~ a: + (Aor.)2 + e

As a first approximation we set o = o_ and introduce this

value in equation (1.26) getting

2 2 2

2 1,97V -V 2 97Y -

7Y - —2-[—23 +2U, s +UL =] = 0 (1.27)
t Ix

Uoo
An alternative form of this equation with M_ = — is
LMDy sy 4y mmy Ly oo (1.28)
o' xx " tyy  Tzz o, xt ;7 tt )

o0

Equation (1.28) is the linearized unsteady potential equa-

tion and is used as the basic equation in most aerodynamic
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analyses. Because of the assumptions made and terms retained
this equation is valid for unsteady, inviscid, irrotational
flows that are purely subsonic or purely supersonic and is
limited to small disturbances only.

3. Linearized Boundary Conditions

To completely specify the mathematical problem that
describes the flow, the following boundary conditions need
generally be prescribed [Ref. 3: pp. 1.27-1.29].

a) Surface Boundary Condition: The wing surface is
impenetrable to the medium.

b) Edge Conditions: Enough viscosity remains in the
inviscid fluid to determine the flow pattern near sharp

edges.

c) Wake Conditions: The free vorticity shed from the
trailing edge must have a circulation which vanishes together
with the bound circulation. It is furthermore assumed that
the shed wake is a continuous sheet of discontinuity which
is coplanar with the wing projection in the direction of
flight. Edge effects and rolling up of the sheet are
disregarded.

d) Conditions at Infinity: A state of uniform flow must
be prescribed at inifinity. 1In addition the Sommerfeld
radiation condition requires waves to propagate away from
sources of disturbance toward infinity.

e) Other Conditions: As the most important additional

condition, the requirement that proper account be taken of




zones of influence and action at supersonic flow velocities,
is mentioned.
The first of the above conditions, namely, the con-
dition of impermeability, as applied to a wing or airfoil,
is considered next. The procedure can be easily extended to
cover other bodies of interest such as slender fuselages, etc.
Consider a wing fixed relative to a Cartesian co-
ordinate system so that it lies close to the xy-plane (Figure
1.7). Assume that the wing is submerged in an infinite mass
of fluid moving with velocity U_ in the positive x-axis.
Let the upper and lower surfaces of the wing be expressed by

equations

i
o
"

] = 2z - zu(x,y,t)

n
o

S = 2z - zl(x,y,t)

The condition of impermeability of these surfaces,

by recalling equation (l1.14), requires that

azu 32 azu

w = W + a X + v 5y for =z = zul (x,y) in Ra
azz azl azz

w o= 5t + u X + v 3y for z = zl’ (x,y) in Ra

where u, v, w are the components of velocity V and Ra is
the portion of the xy-plane covered by the projection of the
planform.

These are exact, non-linear equations. To linearize

them assume, as before, that the disturbance velocities are
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Figure 1.7. Linearized boundary conditions for a wing

small compared to the free stream velocity U, and also that
az 9z

U u .
the slopes 3% Sy etc., are very small compared to unity.

Then retaining first order terms only we get

azu azu

W= ==+ U % for z =2z, (x,y) in Ra
azi azl

w = Tt- + Um W for 2 = zl’ (XIY) in Ra

Since z, and z, are small compared to the wing chord
we may, as a further step, replace the actual wing with an
infinitesimally thick surface of discontinuities in u, v, W
and pressure p. W’ th this mathematical plane surface located
on the xy-plane, we may expand w in Maclaurin series about

its values just above and below the xy-plane
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8w(x,y,0+,t)

+
wix,y,« +t) wix,y,07,t) +z oy N

IW(X,y,0 ,t)

= +
0z

]

w(x,y,zl,t) w(x,y,0~,t)~+z

Using the same arguments as before the higher order
product terms can be neglected and the impermeability or

flow tangency conditions take the following linear forms

+ azu azu
wi{x,y,0 ,t) = 3% + Um 3% (x,y) in Ra (1.2%9a)
- 322 az}Z
w(x,¥,d ,t) = = + T % (x.v) 1in Ra {1.29b)
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IIT. OSCILLATING WINGS OF GENERAL PLANFORM
IN SUPERSONIC/HYPERSONIC FLOW

Consider a uniform (spacewise and timewise) supersonic
or hypersonic flow of an inviscid perfect gas with constant
specific heats past a flat wing of a general planform shape
at an angle of attack a. Assume that the wing is performing
a small amplitude slow pitching oscillation.

The problem considered is to find the unsteady flow
quantities in disturbed regions over the wing and thus its
stiffness and damping derivatives.

The governing equations of motion are given by equations

(la=1lc), restated below.

3_5>:+ 7-(o¥) = 0 (2.1la)
WV, F.o7 4+ B =

Vv = = 0 (2.1b)
(R + Ty (R =

Bt(pY) + Vv V(DY) 0 (2.1¢c)

where p, p, V and y are the pressure, density, velocity

and adiabatic exponent of the gas.
! The flow tangency condition to be satisfied at the sur-

face of the body is given by equation (1.14), restated below.

‘ 38 |, =. - -
ﬁ B4Tvs = 0 At s = 0 (2.2)

where S(r,t) = 0 is the equation of the body surface.




The fluid-shock~fluid boundary conditions to be satis-

fied across the shock are given by equations (1.19-1.22),

restated below.

3G . = _

lo(zg + T-76)] = (2.3a)
S+ 77612 + pv@)?] =0 (2.3b)
196G | G.vey2 4 X_B 2,

[2(at + V-VG)“ + 7=1 p(VG) ] =0 (2.3¢)
[VxvG] = 0 (2.34)

where G(r,t) = 0 is the equation of the unknown shock shape
and the square brackets denote the change in the enclosed
quantities across the shock.

Equations (2.1-2.3) are nonlinear. The nonlinearity of
the governing equations and boundary conditions along with
the existence of a shock with an unknown shape, contribute
to the complexity of the problem considered.

For low supersonic Mach numbers and very low angles of
attack shock waves can be replaced by Mach waves and the
linearized supersonic potential flow theory can be employed.
The problem can then be solved, at least for certain groups
of planform shapes, by fairly general methods. The fundamen-
tals of the linearized supersonic potential flow theory as
applied to a three-dimensional oscillatiag wing are presented

in Section III.B.

For high angles of attack and/or Mach numbers the shock

waves become strong and the linearized theory cannot be used.
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To overcome the difficulties encountered in this case, namely
the existence of the shock and the nonlinearity of the equa-
tions, Professor Hui proposed the use of a perturbation method
in which the unsteady flow field is regarded as a small
perturbation to some reference steady flow. Thus the unsteady
flow problem is to be solved by first finding the corresponding
steady flow solution and then using it as a reference flow
in calculating the unsteady perturbation flow. The solution
of the three-dimensional wing by this method will be presented
in Section III.A.

Finally, in Section III.C results for the stability deriva-
tives are presented. A comparison with linearized potential

flow theory results is also included.

A. PROFESSOR HUI'S THEORY

In this section the problem of dynamic stability of a
flat wing of a general planform shape at arbitrary angles of
attack in steady supersonic/hypersonic flow is considered.
The wing is assumed to be oscillating in pitch with small
amplitude and frequency and the bow shock be attached to the
body at all times.

The problem is covered in [Ref. 5] and only the basic
steps will be included here, in Section III.A.3. Its solu-
tion is based on the assumption of an inviscid perfect gas
with constant specific heats and the perturbation method
developed by Professor Hui is employed to calculate the

resulting unsteady flows over the upper and lower surfaces
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of a two-dimensional flat plate. Finally, the strip theory

approximation is utilized to combine the effects of these

flows for the case of a three-dimensional wing, provided that

the bow shock is attached and therefore the flows are independent.
The unsteady flows over the lower and upper sides of a

two-dimensional flat plate are studied in [Ref. 6,7] and

[Ref. 8] respectively. Nevertheless, we will indicate, in

the following first two sections, III.A.1 and III.A.2, the

way in which these flow problems are formulated and soclved.

We will also give the solutions for the complete set of flow

quantities in the disturbed regions. These flow gquantities

will be used in Section IV where the effects of upstream
unsteadiness in the flow are considered.

1. Two-Dimensional Osc¢illating Flat Plate--Compression
Side

Instead of a flat plate the equivalent flow problem
of a two~dimensional wedge is considered. This problem is
formulated and solved in [Ref. 6,7] with the ultimate goal
of studying the stability of wedges/caret wings. In what

follows in this and the next subsection,

a) The major steps in the method of solution are
] indicated.

b) A generalized approach that permits the formulation of
the fluid-shock-fluid boundary conditions is adopted. This
approach is described in Appendix A and the formulation of
the boundary conditions for the two cases is given in Appen-

dices B and C.
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¢c) Some of the results and discussions contained in
[Ref. 6,7,8], pertaining to the stability of wedges/caret
wings and flat plates, are not included since they are not
directly related to the subject matter of this thesis.

d) On the other hand the solutions for the complete set
of the flow quantities in the disturbed regions, which are
not included in the above references, are given. Much of
the mathematical detail in obtaining these solutions is
omitted. These flow quantities will be used, as mentioned
before, in Section IV where the effects of upstream unsteadi-
ness in the flow are considered.

e) The same symbols as those used in the references will,
in general, be employed. Changes will be limited to those
necessary for clarification purposes or generalization of
approach.

a. Problem Formulation

Consider a two-dimensional wedge of length %, at
design condition (2ero mean angle of attack), in a supersonic/
hypersonic, uniform, steady flow of an inviscid perfect gas
with constant specific heats (Figure 2.la). Assume that the
wedge is performing a low amplitude and frequency harmonic
oscillation in pitch with given circular frequency w, about
an axis perpendicular to the plane of the paper, through the
point C shown. Let a system of cartesian coordinates Oxy
be attached to the wedge so that O is at its apex and axis
Ox is along the mean position of the upper surface. The bow

shock is assumed to be attached to the body and the flow
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Figure 2.la. Oscillating wedge in uniform steady flow

flat plate
X
shock

Figure 2.l1b. Oscillating flat plate--Compression side
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quantities on the upper surface of the wedge are to be
found. For all practical purposes the solution to this
problem will give the flow quantities on the lower side of a
two-dimensional flat plate of length I sec 8 at an angle of
attack 6 (Figure 2.1lb).
b. Method of Solution

The unsteady flow over the upper surface of the
wedge will be found by perturbing the steady shock flow con-
sidered in Section II.A.4.a.

Denote by U_, p_,, p, the velocity, pressure and

-]
density in region A. Denote by Uyr Pyr Py the velocity,
pressure and density of the steady reference flow in region

1 B. Non-dimensional lengths and time are introduced, defined

by
X y Yo -
] x = £, y =L and t = 2% (2.4)
) T z

Assume that, as a result of the oscillation of

the wedge, the perturbed flow quantities in region B are

given by
T o= u o+ cu + ... (2.5a)
2 -— ~
VvV = EV + ... (2.5b)
P = P, + €P + ... (2.5¢)
1 _ ~
P o= o + €0 4+ ... (2.5d)
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where ; describes the deviation of the unsteady flow from
the reference steady flow.

Substitute guantities (2.5) in the governing
equations of motion (2.1), non-dimensionalize the indepen-
dent variables, by using relations (2.4) and get the following

perturbation equations

1
u, + u = - P (2.6a)
t X pouo X
v +v, = - =——p (2.6b)
Polo ¥
P, + P = az(p +p_) (2.6c)
t X o't X *
Po
Pe * o, * E;(ux-+vy) = 0 (2.64)
| where subscripts denote partial differentiation and oy is the
speed of sound in the reference steady flow. Assume that
the perturbation quantities u, v, p and p have the form
u = uoelktU(x,y) (2.7a)
_ iktV
v = ue (x,y) (2.7b)
] _ iktP
. P = p.YM e (x,y) (2.7¢)
oo
ikt
p = poMoe R(x,y) (2.7d4)
i where U, V, P and R are unknown quantities to be found,‘M°
is the Mach number in the reference steady flow and k is




the so-called reduced frequency <¢f oscillation defined by
k = wf/uo. k is assumed to be small and the time indepen-
dent quantities U, V, P and R are expressed as power series

in (ik) of the form

v = o@ 4 eV 4 L. (2.8a)
v = v 4 ounv® . (2.8b) ]
p = p 9 4 a)pY 4 ... (2.8c)
R = RO 4 x)r'M 4+ ... (2.84d)

Expressions (2.8) are substituted in (2.7) and the resulting

expressions in the perturbation equations (2.6). By equating

the same order terms, in each of these equations, a segquence

of systems of partial differential equations is formed.

Only the systems of zeroth and first~order equations are of
interest in stability analysis. The zeroth-order equations

are

(o) _ _ 1 {0
Ux = ﬁ— PX (2.9a)
o}
(o) _ _ 1 5(0)
vx = W Py (2.9b)
(e}
(o) _ (0)
px Rx (2.9¢)
(0) (0) (0)
, U, o+ Vy + MR, = 0 (2.94)




The first-order equations are

(1) 1 (1) (0)
UX + E—PX = -U (2.10&)
(o]
() . 1 (L) _ ()
Vx + ba—:’y = \"4 (2.10b)
[0}
p(1) _ g1y _ p(0) _ (O (2.100)
X X
(1) (1) (1 (0)
Ux + Vy + MoRx = -MOR (2.1048)

Next we consider the boundary conditions applicable
to the problem.
Along the surface, the condition to be satisfied
is the flow tangency condition given by eguation (2.2).
The equation of the surface for a stationary wedge is given
by S =y =0 and for an oscillating wedge is given by
S(x,y,t) =y +e¢(hcosb® ~x) = 0 where & = ;eikt. Equation

(2.2) then, gives with ¥ = {4,v} = u_{1 +eu,ev},
V(x,y) = 1 + (ik)x~h cos8) at y = e(x~h cos 9)

Expanding V(x,y) about y = 0 and neglecting higher-order

terms we get the linearized condition

V(x,0) 1l + (ik)k-hcos9) at y =0

Use of equation (2.8b) gives

vi0 o At y = 0
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vl o x -h cos 8 At vy = 0 (2.10e)
Across the shock, the conditions to be satisfied, are the
conditions given by (2.3). The equation of the shock in

the steady reference flow is given by GS = -y + x tan ¢ = 0,
Let the equation of the shock in the unsteady flow be given
by G = -y + x tan ¢ + €Q(x) = 0, where Q(x) is an unknown 3
function to be determined as part of the solution and

£ = eelkt. To find the boundary conditions across the shock

we substitute expressions (2.7) in (2.5) and the resulting
expressions in equations (2.3). The boundary conditions, J

after linearization, are given by

vV = AQ' + (ik)BQ AT y = x tan ¢ (2.11a)
P = CQ' + (ik)DQ (2.11b)
U = EQ' + (ik)FQ (2.11c)
R = GQ' + (ik)JQ (2.114)
where Q' = dQ/dx and the values for the constants i through

J, which depend on the reference steady flow, are given in
Appendix B. The derivation of these relations is lengthy
and tedious, even for the case considered here, where there

are no upstream disturbances. In Appendix A equations (2.3)

are put in an alternate form. This form permits a much easier

solution of the equations and is repeatedly used throughout

this thesis.
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Expressing the time independent gquantities, U,
V, P and R by their expressions as given by equations (2.8)
we get the following boundary conditions for the zeroth and

first-order systems respectively.

At y = x tan ¢ V(O) = ;Q'(O) (2,9£)
p(0) o g (O (2.99)
ol® o g (O (2.9h)
r(O = go (9 (2.94)

aty =x tano v = ag @D 4 go(® (2.10f)
p1) = o (D) 4 pot0) (2.10g)
U)o g (D) | 5O (2.10m)
R o gor D) 4 (@ (2.10i)

c. Complete Solution

Two boundary value problems have been set up.

The zeroth-order equations (2.9a-2.9d) and the
zeroth-order boundary conditions (2.9e-2.9i) constitute the
first boundary value problem. This problem, which will be
solved first, corresponds to the . problem of steady flow past
a wedge and its solution should give the flow-quantities ...

behind the shock for a stationary wedge. This result is

shown in Appendix B.
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The first-order equations (2.10a-2.10d4) and the
first-order boundary conditions (2.10e-2.10i) constitute
the second boundary value problem.

In bothproblems the equations and boundary con-
ditions are linear and therefore suggest for the unknowns
v, v@), p3) 4ng RE), (4 = 0,1), solutions that are
linear combinations of the non-dimensional spatial coordinates
x and y.

In view of the above reasoning, we assume for the

first problem a solution of the form

gt _ u{0)x + u§°)y + u§0) (2.12a)

(O . v1(0)x + v§0)y + V§°) (2.12b)

p(0) _ p{o>x + p§0>y + p;0> (2.12c)
(0) _ (0) (0) (0)

R = ) X+ ry'y+ r, (2.124)

L q{°’x + qéo) (2.12e)

Substitution of these values into the zeroth-order equations

and boundary conditions (2.9) gives the following solution

U(o) = uéo) = é/; (2.13a)
vl 2 v§°) = 1 (2.13b)
p@ o i . /A (2.13¢)
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A 2 SR (2.13d)
2@ - x/A - a,9 = x/a - ncos o (2.13e)
where the coefficient qéo) was found from the additional con-

dition that the bow shock is attached to the leading edge

of the body. Recalling that the equations of the surface

and the shock are given by S(x,y,t) = =-y+e(x-hcos€) = 0
and G(x,y,t) = -y+xtan¢+eQ(x) = 0 we get the above result
by letting x = 0 in the equation e (x-hcos8) = xtan¢+e(Q(0)

+(ik)o Y

).
Similarly to solve the second boundary value

problem we assume a solution of the form

g1 _ u1(1)x + uél)y + uél) (2.14a)
v 2 V{1)x + v2(1)y + vél) (2.14b)
i
1 (1 _ (1) (1) (1)
| P = p;x v pyty + by (2.14c)
, (1) 2 r{1)x . rél)y + rgl) (2.144d)
oL q{l)xz . qél)x + qél) (2.14e)

and substitute these values to the first-order equations and

boundary conditions (2.10). The resulting solution is given

below

u{l) - -[Cq{l)/M°'+(E +D/M°)/A + 2tan¢]

A A A
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uél) = [q(l)(E+C/M )+(é+;+6/M )/A]/tan<p+2

uél) = h coselé(g—l)/A F]

v{l) = 1, vél) = = hcos 8

viV = aq{V +B/a-1)/tan o

p{l) = Cq{l) + S/A + 2Mo tan ¢

Pél) = - 2mM

p{1) = h cos 8lc(B-1)/A -D]

r{l) = 6q{l) + (5 +E ~é)/i + 2 MO tan ¢

eV = (6 -0q{t) + (G +H-C-D)/Al/tan o= 24
él) = h cos e[é(ﬁ-l)/i-ﬁ]

ait’ = k¥ (a-B-C+E/M_) /A -M_ tan ¢[D/A+2 M Jtans)1/2(k%a

+ EMO tan¢)
f .
k2 = M2/mi-n)

2. Two-Dimensional Oscillating Flat Plate--Expansion
Side

This problem is formulated and solved in [Ref. 8].




a. Problem Formulation

Consider a two-dimensional flat plate of length
T in a supersonic/hypersonic uniform steady flow of an
inviscid perfect gas with constant specific heats. Assume
that the plate is performing a low amplitude and frequency
harmonic oscillation about its leading edge. Let a system
of Cartesian coordinates Oxy be attached to the body so that
O coincides with the leading edge of the plate and axis 0x
is along its mean position (Figure 2.2a). The bow shock is
assumed to be attached to the leading edge and the flow
qguantities on the upper surface of the plate (in Region C)
are required.

b. Method of Solution

The unsteady flow, over the upper surface of
the oscillating plate, will be found by perturbing the
steady Prandtl-Meyer flow, considered in Section II.A.4.b.
Denote by U_, P, and o the velocity, pressure and deunsity
in Region A, Denote by Uys Pyr 0q the velocity, pressure
and density of the reference steady flow in region C. The
solution procedure that follows is similar to the one pre-
sented in Section III.A.l.b and most of the assumptions and
results given there, apply to this section too, provided

that Uyr Pgor Py Mo and a, (the reference steady flow quanti-

e}
ties over the compression side of the flat plate) are replaced
by Uys Pyr Py Ml and @y (the reference steady flow guantities

over theexpansion side of the flat plate).

68

~ o .
u. i, HE YR YIS RPUINY VIR - Ve VN




W)
i

<\

Front in

- -. . unsteady flow

—_ f
Ue » Moo reference steady flow

flat plate

—

X

Figure 2.2a. Oscillating flat plate--Expansion side




Figure 2.2b. Oscillating flat plate--Polar coordinates
for Prandtl-Meyer flow




b

Non-dimensional time and lengths are introduced,
defined by (2.4). BAs a result of the oscillation of the

plate assume that the perturbed flow quantities in region C

are given by (2.5). The resulting perturbation equations are
given by (2.6). Assume that the perturbation quantities are
given by (2.7) and let the time independent quantities U, V,
P and R be expressed as power series.n (ik) by (2.8). The
zeroth and first-order equations, derived as before, are

given by (2.9a-2.9d) and (2.10a-2.10d) restated below.

0) 1 _(0)
A (2.16a)
©) _ _ 1 (0
vi® - i g (2.16b)
p(0) _ RO (2.16¢)
X X
(0 4 ¢(0) Ly gD o (2.164)
X Yy 1 "x
(1) _ 1 (1) _ _ (0
AR AP T - U (2.17a)
vl 4 L p) (0 (2.17b)
b 4 M1 Y
ptl) _ g(1) r(9) - p(0) (2.17¢)
X p.4
o) L v@) o Y o -y RO (2.174)
X Y 1 "x 1

We now consider the boundary conditions applica-

ble to the problem.
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Let the equation of the oscillating surface of

1

the plate be given by S(x,y,t) = y-e€x = 0. The flow

tangency condition (2.2), with V = ul{l +eU,eV}, gives after

linearization
v(o) = 1 At y = 0 (2.16e)
v oy At y = 0 (2.17e)

We next consider the boundary conditions across
the surface that is separating regions B anc C. We assume
that as a result of the small amplitude slow oscillations
of the body the separating surface is slightly deformed and
its equation is given by G = -y +x tan¢ +eQ(x) = 0 where
Q(x) is an unknown function which may be expanded as

© , (19g®

Q(x) = Q + ... . We call the flow expansion
an expansion front or, simply, front and assume

that upstream of it the Prandtl-Meyer flow is not disturbed
while, along the front, the unsteady flow matches the steady
Prandtl Meyer flow continuocusly. The assumptions made are

completely analogous to the assumptions made in the case of

a finite compression shock discontinuity and the Rankine-
Hugoniot conditions (2.3) may be used to give the boundary

conditions across the expansion front. We note that, since

¢

r

f

r lthe difference in the form of this equation and the one
s considered in the previous section is due to our assumption
that in this case the flat plate is oscillating about its
LE and thus h = 0.
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we are dealing with an infinitely weak discontinuity, the

flow across the front is isentropic. The procedure is given in

Appendix C and the resulting boundary conditions, after lineari-

zation and use of equations (2.8), are given below.

v(0 o g (O At y = xtané (2.16f)
pl0) - @i (O (2.169)
g0 o gige(0) (2.16h)
RO L g (O (2.161)
v o A L gigl® ar y=xtan ¢ (2.17£)
2 L g ) 4 g (O) (2.179)
v 2 g ) 4 pig® (2.17h)
R = grgr (D) 4 gigl0) (2.171)

where the coefficients A' through J' depend on the reference
steady flow and are given in Appendix C.
c. Complete Solution
Two boundary value problems have, again, been
set up and will be solved successively. The zeroth-order
equations and boundary conditions (2.16) constitute the

first problem, which corresponds to a steady




L §

Prandtl-Meyer flow problem. To solve it assume, as before,
that the unknowns have the form given by (2.12), substitute
in (2.16) and get with x = M,/ Vmi -1

(0)

P = p§°) = (2.18a)
(0 _ réO) = x (2.18b)
0@ - wl® o e, (2.18¢)
v o oy (2.18d)
0@ o 1}; G ox o+ qéO) (2.18e)

50) 0 since, in this case, the

where the coefficient g
plate is oscillating about its LE.

The second boundary value problem consists of
the first-order equations and boundary conditions given by

(2.17). In this case the unknowns are expressed by (2.14)

and the resulting solution is

2
M. (M2-2)

p{l) Al k- oy (2.19a)
( VM§-1)3

(Y = ptD (2.19b)

(2.19¢)




Y (2.194d)

3. Three-Dimensional Oscillating Wings of Arbitrary
Planform Shape

The problem is formulated and solved in [Ref. 5]

and only the major steps in the method of solution are given

here.
a. Problem Formulation

Consider an oscillating wing of arbitrary plan-
form shape at an angle of attack in a steady, uniform, super-
sonic/hypersonic flow (Figure 2.3). Assume that the oscilla-
tions are periodic with small amplitude and frequency and
that the bow shock is attached to the wing. We let the
pressure, density, velocity and Mach number of the approach-
ing flow be given by p_, o, U, and M_. We also denote the
total area and the root chord of the wing by § and % respec-
tively and the distance of the pivot position from the leading
edge by X We assume that the pitching motion of the wing

is described by

o(t) = 7 e'vt
where § and w are the amplitude and circular frequency of

oscillation and t is the non-dimensional time.

We define the reduced frequency of oscillation

by




x/1 = £(y/b)
‘ﬂ7/ﬁl,y)
U

—_—

t x/1=g(y/b)
-
° |
b

Mc

fe— | —=

Figure 2.3.

Three-dimensional wing
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b. Method of Solution
The in-pitch stability derivatives of the wing
are required. The pitching moment coefficient Cm' the
stiffness derivative -Cm and the damping in-pitch deriva-

8
tive -Cm are defined by

- 2
C, = 2M/p UZLS

(1/28) [ [(x-x)C_(x,y,t)dS
S P

H1

e(t)[(-Cme) +(ik)(-Cmé)] (2.20)

where M is the moment about the pivot axis and Cp is the
pressure coefficient.

The pressure coefficient is defined as usual by

2(p -p,)

and using the two-dimensional flow assumption can also be written in the form

X
= , X_~ "¢
= (Cp)o + e(t)[A-+ﬁ:(Bx Cxc)] (2.21)

where A, B and C are dimensionless constants which are

functions of geometry and steady flow quantities and (C_)

o

o
is the mean pressure coefficient corresponding to 8(t) 0.
This coefficient has no contribution to the stability
derivatives and will be neglected.

Qur goal is to calculate the coefficients A, B,

C appearing in relation (2.21) and use the pressure coefficient
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in relation (2.20) to obtain the stability derivatives.
It is clear that, for a two-dimensional flat plate with
attached shock wave, the coefficients will be the sum of
independently obtained coefficients over the compression
and expansion sides of the plate respectively. Thus the

coefficients will have the form

A = 4, - Au' B = B, -B, C = C, - Cu (2.22)

where the subscripts 2 and u denote the lower and upper
surface respectively.
The results from Section III.A.l and [Ref. 6,7]

are used to obtain coefficients Al' B, and CQ of the form

L

~ o~

A, = AOC/A, BZ = uo(ZG-I), C2 = uoI (2.23a)

where Ao and o are coefficients introduced to account for

differences in notation given by

2 Po, Yo,2
A = ——(=) (=) u = A U,/u
o] M, P, Uy ' o] o o)
and G, I are quantities defined in [(Ref. 6,7].
Similarly the results from Section III.A.2 and

[Ref. 8] are used to obtain coefficients Au' Bu and Cu of

the form

>
]

2 .,0.5 _
A M/ M7-1)" 07, C, = A/ (2.23b)

2 2_,,1.5
B = ulMl(Ml-Z)/(Ml-l) '
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where Al’ W, are correction coefficients to match present

notation of the form

o] u
_ 2,71 1,2 _

C. Solution

Substituting relations (2.23) in relation (2.22)
and putting the resulting expressions in relation (2.21)
we obtain the pressure coefficient for a two-dimensional
flat plate. We shall employ the strip theory to solve the
three~-dimensional wing problem in hand, which means we will
assume that the flow, at each point of the wing, is two-
dimensional locally. This assumption permits the use of the
two-dimensional flat plate pressure coefficient for the case
of the three-dimensional flat wing.

Using relations (2.21) and (2.20) we get

-cme = A(I; - x /%) (2.24a)
— B - - 2
-Cm, = [312+(c B)I4] [(B+C)Il+(c-B)I3]xc/£+ C(xc/l)
8 (2.24b)
where
1 5 2 L 3 3
I, = k | (g%-£%)an, I, = 2k/3 [ (g7-£7)dn (2.25)
0 0
1 1 2 .2
I, = 2k, [ f(g=-f)dn, I, = k [ £(g°-£%)an
3 1, 4 0

k = 2b/S, n = y/b




- AT

For delta wings with power law leading edges, i.e., wings

with £(n) = nl/n and g(n) = 1, equations (2.25) become
Il = (n+l)/(n+2), I2 = (n+l)/(n+3) (2.25a)
I3 = n/{(n+2) , I4 = n/(n+3)

The minimum value of C . obtained for pivot position
8

xc/l = [B+(2n+l1)CJ}/2C(n+2)
is

(-C_ ) = - L[B+(2n+l)c ]2

mg min c Nt + 4 (B+nC)/(n+3)

By setting (-Cme)min

= 0 a stability boundary for power law

delta wings may be obtained, which is practically independent

of the power n, as shown in (Figure 2.4). Plots of Cme and

Cm vs o for several values of pivot axis position and powers

n are given in (Figure 2.5). In (Figures 2.6, 2.7) the

stability derivatives vs the pivot position are plotted for

several values of power n and angles of attack 10° and 20°.

Comparisons of results obtained by the present theory with

results obtained by other theories and related discussions

are included in [Ref. 5] and will not be repeated here. ;

Nevertheless in Section III.C we will compare the present

results with potential flow theory results.
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Figure 2.4.

Stability boundary

.




-008 T xc/ | - 0.8

Figure 2.5. Stability derivatives vs AOA
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curves continued to line through
f X¢/1=1.0

Figure 2.6. Stiffness derivative vs pivot position
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B. LINEARIZED THEORY

It was pointed out in Section II that several methods
are used in the linearized theory of supersonic aerodynamics.
A simple application of one of these methods, the so-called
method of fundamental solutions, will be described in this
subsection. For this application a distribution of pulsating
sources over a "simple" planform will be considered.

Before dealing with this application, however, the notion
of a disturbance propagation in supersonic flow will be re-
viewed and the fundamental solution for a moving pulsating
source will be introduced.

1. Propagation of Disturbances

Supersonic flow is dominated by the fact that dis-
turbances travel with finite velocities, namely, the speed of
sound. In formulating the linearized potential equation
(1.28) deviations of :he speed of sound from its free stream
value a_ were neglected and also the perturbation velocities
u', v', w' were taken very small compared to the free stream
velocity U_. As a result any disturbance from a source
located at point (x,y,z), in a coordinate system fixed to
a body in the flow, can be felt only inside or on the surface
of a right cirular cone whose axis points downstream from
the source (Figure 2.8). An observer moving with the fluid
sees a pulse emitted at t = 0, expanding on a spherical sur-
face with instantaneous radius o_t and center moving down-

stream with velocity U_. The positions of these expanding,
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Upstream zone of influence Downstream zone of influence

Figure 2.8. Upstream and downstream zones of influence.
Disturbance located at (£,n,;) at time t = 0

moving spheres form an envelope which is a cone of semivertex

angle

where u is the Mach angle.
This cone is known as the Mach cone or downstream
zone of influence of the point (x,y,z) and its equation is

given by
(2-x)% = (M2-1) [(-y) 2 + (z-22%) = 0 (2.26)

Oon the other hand the point (x,y,z) can be influenced
by sources whose locus is evidently a similar cone directed
forward from (xX,y,z). This cone is known as the forecone
or upstream zone of influence and has the same equation except

that for this case x > §.
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Assume now that a steady supersonic flow has been
established past a stationary three dimensional wing lying
very close to the xy-plane. Regarding each point of the wing
as a disturbance source we can see that the downstream zone
of influence for the entire wing is bounded by the envelope
of the Mach cones emanating from the leading edge. If the
leading edge is straight (or the wing is two-dimensional)
the envelope reduces to the so-called Mach wedges.

To calculate the fluid motion at any point (x,y,2)
we need to consider only the contribution from the disturbance
sources that belong to the region of the xy-plane intercepted
by the forecone from point (X,y,z). This area of influence
forms a hyperbola and, with sources assumed to lie on the
xy-plane, is found from the equation of the forecone (2.26)

by setting ¢ = 0. We thus get

o = ve Vv x-9yeiy -2? (2.27)

A generalized supersonic planform with leading edge
AA'C'C, trailing edge DD'F'F and streamwise tips AF and CD

is considered next (Figure 2.9). For each point (x,y,0+) the

area of the sources that influence the point reduces to a

region bounded by two straight lines upstream of the point.
These lines found from the forecone equation (2.26) by setting

z=0and ¢ = 0 are given by

E=-x = t ‘/Mz-l (y-n) £ < x

7T
e PR A . gos dek, S YRLY Y
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\ /
undisturbed flow ﬁ_\\A
' \

\
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Figure 2.9. Generalized supersonic planform

and are shown as dotted lines making an angle u with the
Xx-axis (Figure 2.9).

The portions A'BC' and D'EF' of the leading and
trailing edges are called supersonic since the velocity normal
to these edges is greater than the speed of sound. Similarly
the remaining portions of the leading and trailing edges are
called subsonic since the normal component of velocity is
less than the speed of sound. Along the supersonic portions
of the leading and trailing edges there is no communication

between the upper and lower surfaces of the wing and the flow
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over the top or bottom of the planform can be calculated
without reference to the shape of the opposite side. On
the contrary the upper and lower surfaces of the wing are
not independent along subsonic portions of the edges.

Points 1, 2 and 3 shown (Figure 2.9) are selected
to illustrate different sorts of upstream influence regions.
The difficulty in solving the linearized flow problem, i.e.,
finding the fluid motion at these points, increases as we
move from point 1 to point 3.

There exists no universal method of approach in solving
the linearized problem for different sorts of influence re-
gions. Thus each planform shape calls for a different method
of approach.

It is the simplest case of a planform with purely

! supersonic leading and trailing edges, the so-called simple

planform, that will be considered later in this section.

2. Fundamental Solution of a Moving Source

For U_ = 0 the linearized potential equation (1.28)

reduces to

1
Yex ¥ Yyy T ¥ =-;2'wtt
®

This is the classical wave equation for the propagation of

sound in a still medium and its fundamental solution is given

by

‘Y(x,Y:Z,t) = %F(t‘ai)
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where a_ is the speed of sound of the undisturbed flow and

r is the radial distance from the origin, i.e., r = sz +y2 +z:.
‘A solution of the linearized potential equation can

thus be readily found if we can transform it into the classi-

cal wave equation. To achieve this the following transfor-

mation, known as the Lorentz transformation, is employed.

E" %) - T =

|
il

(t + X)

a_ (1 -M%)

The velocity potential of a sound source fixed with

respect to the xyz system is then found to be

Ha Vl'-MZ -me-fR

¥Y(x,y,z,t) = ﬁ F[ 3 (t - ———n—)]

T o, (1 -M2)
l1-M

«©

where R = /xz +(1-Mi)(y2 +22) and l-Mi is known as the
Prandtl factor.

To find the constants a and u introduced by the
Lorentz transformation we require that the sound source should
produce constant sound flux independent of the free stream

Mach number and we get

a = o (1-M2), o= View?

Thus the velocity potential of the moving source becomes

if in addition the relation A = - f% is used,

3
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¥(x,y,2,t) = - IR F(t - m)

Expressing the above result in a coordinate system moving

uniformly with the source located at ({,n,z) we obtain

Y(x,y,2,8) = - e Flt=25) = - o F(eT)) (2.29)
where:
R = Vx-02+a-MHiy-mi+iz-02
and
T . D _ =M(x~£) +R
1 o
© a (1 =-M_)

By comparison of expressions (2.28) and (2.29) it is seen
that the solution for a moving source can be obtained from
the solution for a stationary source by replacing the ordinary
distance r by R in the amplitude and by D in the phase. The
gquantities R and D are called amplitude and phase radii
respectively.

A geometric interpretationis given in Figure 2.10.
At time t a field point Q and a source O moving with velocity
U, in the negative x-direction are considered. For supersonic
flow there are two spherical waves passing through point Q
at time t. These waves originated from the source at times

t-Ti and t-Tz, at which times the source was located at

positions Py and Pz shown (Figure 2.10a). For subsonic flow
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Figure 2.10a. Supersonic source

Figure 2.10b. Subsonic source




there is one spherical wave passing through point Q that
originated at time t-T when the source was located at point

P (Figure 2.10b). From the geometry of the figure we get

(x=5-U_ 12 + (y-m? + (z~0)2 = a?r? (2.30)
Solving this equation for time T we get for subsonic flow
one real positive solution and for supersonic flow two real
positive solutions.
Physically we are looking for the effect that a dis-

turbance, originating at point (£,n,z) at some time t-T,

will have at some later time t at a point (x,y,2). 1In this
sense the potential is a retarded potential. For supersonic
flow the disturbance is first felt at some point (x,y,z) :

after a certain time T, has elapsed. The point (x,y,z)

1
penetrates the wave front of the disturbed region and be-

cause it is moving at a speed greater than that of the wave
front it emerges from the disturbed region at some later time

T For subsonic flow once the point (x,y.z) penetrates the

2°
wave front (after a certain time T has elapsed) it will remain

in the disturbed region since its speed is less than that of
the wave front. Finally the nonexistence of positive roots

of equation (2.30) should be associated with an undisturbed

region, i.e., with v = 0.
In view of above reasoning the source solution for

supersonic flow takes the form
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Y(x,y,2z,8) = - Z%ﬁ[F(t'Tl) +F(E-7,)]

where:
M (x=-§)-R
T = —D- = —]:—[ i ]
1 a, a, Mi-l
= M (x-£)+R
T = —D— = -—l;-[ b ]
2 T ey Mz—l
R = ‘/(x~£)2-(Mi-l)[(y—n)2+(z-c)§]—

For a purely harmonic time dependence the source

solution takes the following final form

iwt = -
W(X'Y,Z,t) = - %ﬁ? e 1'Q)(X“‘E)COS M& R (2.31)

where:

w 1is the frequency of oscillation

wM
s = ——fz'l——- is the compressible reduced frequency of
a, (M -1) oscillation
R = Vix-£)2% - 2-1) ((y-m) % + (z-0) ]

3. Simple Planform Solution

Consider a three dimensional winglperforming a small
amplitude harmonic oscillation of circular frequency w. Let
the wing surface be very close to the xy-plane of a Cartesian
coordinate system attached to it and let the body move with

supersonic velocity U in the negative x-direction.
P © g
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The equations of the upper and lower wing surfaces

are given by

iwt

[}
i

Su(x,y,t) z-zu(x,y,t) z-hu(x,y)e

wt

[l

Sy (x,y,t) z -z (x,y,t) = z-hl(x,y)el

and the linearized tangency conditions given by (1.29) become

+ iwt,, Bhu
W(XIYrO ,t) = e [lwhu+U°° W (2.323.)
. 3h
wix,y,07,8) = e"“Flivh, +u, -5 (2.32b)

Assume for simplicity that we are dealing with a
simple planform and regard each point of the wing as a pul-
sating source. Recalling definitions and terms used in
Secticon III.B.l this means that

a) The leading and trailing edges of the planform are
purely supersonic and the flows over the upper and lower
sides of the wing are independent.

b) Finding the fluid motion at each point of the surfaces
involves the same sort of upstream influence zone, namely, the
sort indicated by point 1 in Figure 2.9.

¢} For a general point (x,y,2) the contribution of the
disturbance sources that lie on the hyperbola with end points
Ny and N, given by equation (2.27) is to be considered.

In view of the above the complete solution for the

velocity potential can be found by superimposing the effects
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of all sources that lie within the upstream influence zone
(Figure 2.11). Integrating the fundamental solution for a

r.oving source, given by relation (2.31), over the hyperbola

we get
S A2 -
iot §=x-z VM-l n, -iB(x-E)
- - q(g,n)e 207>

Y(x,y,2,t) = = =T f J R

£=0 Ny

W
cos ﬁ: R
-+ ——g— dg dn (2.33)

where g(f£,n) is the unknown source strength.

y i
Z | simple planform
forecone 3
12
'(X1sz)
o y
x e L :
< ]
é zcotp =zv‘—%3; I
x~zcoty X -2COf

ta) (b)

Figure 2.11. Limits of integration
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To find the source strength we note that in the pro-

cedure followed the wing was represented by a pulsating
é panel embedded in an otherwise rigid xy-plane. A mathemati-

cal boundary value problem has thus been formulated for which
the normal velocity of the fluid on the panel is prescribed
by relations (2.32) and outside the panel it is zero, since
no pulsating sources exist there.

It can be shown based on physical considerations that
the source strength can be expressed in terms of the normal

velocity by the realtion

q(€,n) = 2wlg,n) = 2(iwh+u, 32

Substitution of this value in equation (2.33) per-

mits a straightforward calculation of the velocity potential

y ¥,

C. COMPARISONS WITH LINEARIZED POTENTIAL FLOW THEORY
In this section we consider sweptback tapered wings with
straight supersonic leading and trailing edges and streamwise

tips (Figure 2.12). For this planform shape equations (2.25)

become
¥ I, = 280(k%k3)/3+k, +1]/8 (2.34a)
1 27% 2 i
|
I. = 208[(k3-k3)/4 +k2 +3k./2 +1]1/38 (2.34b)
2 2 k1 2 t3Kk, . -,
[
I, = 288k, [(k,~k,)/3+0.5]/5 (2.34c)
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and

Figure 2.12.

I,

S/48

I

_ 2.2
= 28k [(k5-k$)/4 +2k,/3 +0.5]/8

ky

xl/l.

k

2

Some special cases readily follow.

For a two-dimensional flat plate

1/3,

I

the stability derivatives become

A(D.5 -xc/l)

B/3 = (B+C) (x,/%) /2 +C(x_/1) 2

o
H
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Geometry of sweptback tapered wings

(2.344)

xz/l-l

S/48 2
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For the case of a triangular delta wing,

I = 2/3, 12 = 0.5, I3 = 1/3, I4 = 1l/4, S/48 = 1

and the stability derivatives are

1
0
]

A(2/3 -xc/l)

1
(9]
1]

(B+C)/4 - (B+3C) (x /2)/3 + C(xc/R.)z

For oscillations at small angle of attack the coeffi-

cients A, B, C appearing in equation (2.21) become

_ _ 2_ 2
A cC = a B = ao(B 1)/8 (2.35)
where R = JMz-l'and @ is the two-dimensional lift curve

slope (a = 4/8).

In this limiting case the stability derivatives given
above for a two~dimensional flat plate and a triangular delta
wing become, as expected, identical to well known formulas
based on potential flow theory [Ref. 10: pp. 52,144]. As a
result of the strip theory approximation the stability deriva-
tives of a rectangular wing are independent of its aspect
ratio and the stability boundary is always the one for a
two-dimensional wing [Ref. 10; Fig. 7.7].

Formulas (2.34) and (2.35), based on Hui's theory,
were used to calculate the stability derivatives for several

sweptback wings, with straight leading and trailing edges
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and the results were compared with results based on potential
flow theory, as given in [Ref. 11,12]. The comparisons are

shown in (Figures 2.13-2.17) and the procedure followed to

read values for the stability derivatives from [Ref. 11, 12]
is described in Appendix E. Good agreement is generally

shown.
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Figure 2.13. Stability derivatives vs Mach number
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Figure 2.17a. Stiffness derivative vs Mach number
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Figure 2.1l7b. Damping derivative vs Mach number
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IV. EXTENSION OF PROFESSOR HUI'S THEORY-~

UNSTEADY, NONUNIFORM UPSTREAM FLOW

Consider a uniform, spacewise and timewise, supersonic/
hypersonic flow of an inviscid, perfect gas, with constant
specific heats, past a formation of two wedges at design
condition (Figure 3.la).l The wedges are assumed to be
oscillating in pitch, with small amplitude and frequency,
in an independent fashion and the bow shocks are assumed to
be attached to both bodies at all times. The flow gquantities
over the upper and lower sides of the second two-dimensional
wedge (in Regions C and D) are required, It is clear that,
depending on the difference of the semi-vertex angles of the
two wedges, either

a) both sides of the second wedge are compression sides
(Figure 3.la) or,

b) one side of the second wedge is a compression side and
the other side is an expansion side (Figure 3.lb).2

These compression and expansion side problems are con-
sidered in subsequent subsections.

In subsections A and B the flow gquantities over the com-

pression and expansion sides of an oscillating wedge will be

given. The upstream flow (in Region B), is assumed to be

lThis problem, suggested by Prof. Platzer, is of interest
in high-speed turbomachinery aerodynamics.
> :

The. possibility of the second side being neither a
compression nor an- expansion side is not excluded. 1In this
case though region C becomes an extension of region 3B, in
which region the flow quantities are assumed to be known.
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oscillatory with circular frequency w and flow guantities

of the form

u = u (1l +eU) (3.1a)
Vv = u_ eV (3.1b)
o
P = po(l + €YMP) (3.1c)
p = po(l + sMoR) (3.14)
where:

u, v are the x- and y-velocity components relative

to the coordinate system shown (Figure 3.la);

g = selkt with €: a small parameter characteristic of

the deviation of the upstream flow guantities
from their average value;

k: the so -called reduced frequency defined by

k=£
uo

¥: a characteristic length of the flow;

Uy rPyrPy and Mo are the mean or average velocity, pressure,
density and Mach number of the upstream flow;

U,V,P and R: are time independent quantities considered to
be known functions of the non-dimensional
gspatial coordinates x and y.

We will restrictthe analysis to small reduced frequencies

k and will assume that these gquantities have the form

U = u(°)+(ik)U(l) = u§°)+(ik)(u{l)x+u§l)y+u§l)) (3.2a)
v = v % a0vt = oi04 ik (i aev B yavit)) (3.2b)
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R = RO 4 (ix)rY = 3+ ik (x {1V +r§l)y+r(l)) (3.2d)
where the coefficients u(o) {O), ... are known constants.

It should be noted that the above forms contain as
special cases the closed form solutions found in Sections
IIT.A.l1 and III.A.2 for the flow over the upper and lower
sides of an oscillating flat plate at an arbitrary angle of
attack. Thus the results given in the following subsections
A and B hold true for upstream oscillatory fields of the
general form (3.2) and are not limited to oscillatory fields
created by oscillating flat plates/wedges. Similarly the
solution given in subsection A contains as a special case
the solution to the problem of a stationary wedge in an

oscillatory, uniform spacewise, hypersonic free stream, which

was studied in [Ref. 9]. Furthermore the solution presented
here is exact and holds for the complete supersonic/hypersonic
speed range.

In subsection C an alternate approach to the expansion
side problem is suggested. In this approach the upstream
flow is assumed to be oscillatory and, for simplicity, uni-
form spacewise. Two boundary value problems with linear
E equations and boundary conditions are formulated and a closed

form solution of the problem is sought.
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A. UNSTEADY, NON-UNIFORM FLOW PAST AN OSCILLATING TWO-
DIMENSIONAL WEDGE--COMPRESSION SIDE

Consider a wedge (Body I), at design condition, osci-
llating'with small amplitude and frequency in supersonic/
hypersonic flow (Figure 3.2). This flow problem was studied
in Section III.A.l1 and the flow field quantities Gé, Vﬁ, Eﬁ,
35, ... in region B (expressed relative to axes O'x'y') were
completely determined. Assume now that a second wedge
(Body II), located entirely in Region B, is oscillating also
with small amplitude and frequency. The flow field quanti-

ties GE' ;E' Ee, pgr --. in Region C are required.l
To solve the problem we adopt the following procedure.

a) Express all flow field quantities relative to the
coordinate axes Oxy attached to body II in its mean position.

b) Assume that both bodies I and II are stationary and
find the reference steady flow quantities in Region C.

c) Assume that body I is oscillating while body II is
kept stationary and superimpose to the steady flow quanti-
ties in region C perturbation gquantities due to the oscilla-
tion of body I. .

d) Assume next that body II also is oscillating and
superimpose to the aleady perturbed flow quantities in Region

C new perturbation quantities due to the oscillation of body

II.

1Flow quantities in region D can be found in a completely
analogous way (by simply letting 0, = 8, +6, in the solution)
since the flows are assumed indepegdent.
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The procedure described above effectively breaks down
the flow problem in hand (namely, the calculation of the
flow quantities in Region C when both wedges are oscillating)
into a sequence of three separate problems which may be solved
successively to give the final results.

The solution method, which is based on Professor Hui's
theory, is presented in Sections IV.A.2 and IV.A.3. The
final results are inen in Section IV.A.4. 1In the following
section IV.A.l, the problem is formulated and the flow field
quantities in Region B are expressed relative to axes Oxy
attached to body II in its mean position.

1. Formulation of Problem--Expressing UpstreamQuantities
Relative to Coordinate System Attached to Second Body

Consider steady uniform supersonic/hypersonic flow
past the formation of the wedges described above (Figure 3.3).
Assume that the wedges have chord lengths Tl and Tz and are
oscillating with circular frequencies Wy and Wy Cartesian
coordinate systems 0'x'y' and Oxy are attached to the bodies
with origins placed at the wedge apexes and axes O'x', OX
along the mean positions of the upper surfaces. Let the
steady flow quantities in Regions B and C (stationary wedges)

be given by uOB, poB, pOB and Uys Pyr Py respectively. Also

denote by t the time variable and by ﬁé, 3§, Eé and Eé the
perturbed quantities in Region B expressed relative to axes
0'X'y'. The departure of the perturbed flow from the steady
flow in Region B is characterized by the small quantity ;1

introduced below and the reduced frequency associated with
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the oscillation of the first wedge is defined, as usual, by

w L
k, = j L Similarly the reduced frequency associated wi%h
° w
the oscfilation of the second wedge is defined by kzla i 2,

o
Non-dimensional time and lengths are introduced associated

with bodies I and II as follows,

= t/1 = t/T ! = x'/T = w/0
t/ll, t t/lz, X X /21, X x/l2

t 2

1

y' = y'/%, ¥ = Y¥/2,

We assume that the perturbed guantities in Region B

have the form

ug = uoh‘l + elU) (3.3a)
-3
vB = el uOB v (3.3b)
Eé = pOB(l + elyMOBP) (3.3¢)
Pm = p_ (L 4+ .M R) (3.34)
B og 1l ©p
~ iklt
where €, = sle and
= (0) . (1) (1), (1)
8] uj +(1kl)(u1 x' +uy +u3 ) (3.4a)
. 1l
v = véo) +(1kl)(v{1)x'-+vél)y"+v§ ))

P = p§0) +(ikl)(p{l)x’-+pél)y' +p§1))

(1) (1)

réo) {l)x’-frz y' +ry )

+(ik1)(r
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;0), uil), ... assumed to be given. We

with coefficients u
recall that in Sections III.A.l and III.A.2 the problems
of uniform, steady supersonic/hypersonic flow, past harmonically
oscillating wedges/flat plates were studied and the perturbed
quantities behind the shocks/expansion fans were, in both
cases, found to be of the form assumei above by relations (3.3)
and (3.4). Thus the analysis that follows does not distinguish
whether the disturbed flow field in Region B has originated
from an oscillating wedge or flat plate over its expansion
and compression sides and the appropriate coefficients and
parameters should be used to make the distinction for the
specific case considered.

Next we express the quantities given by (3.3) and
(3.4) relative to the coordinate system O Xy attached to
body II. Parallel transformation and rotation of axes gives
for the general quantity

(1)

2 y‘-+m§l))

M = méo) + (ikl)(mil)x'-+m

where symbols M and m stand for capital and lower case sym-

bols U, V, ... and u, v, ... respectively.

(0)
M=m3

+ (ikl)Ci

X+ C!'y+C') (3.5)
' ) m

3

where

a, = Gl cosel+31 sinel, Bo = Bl cosel -a,y sinel,
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Bd = 62 - el

CI;‘l = (m](_l) cos 84 +m2(l) sin8,) Tz/'fl
Cx;lz = (mél) cos 8 4 -m](_l) sin ed)zz/rl.
= n{t) + (it v ntT, /T,

Combining relations (3.3) and (3.5) we express the perturbed

quantities EB and EB relative to axes O Xy in the following

form
P, = p. (L+e, [C_ +(ik,NC_ x+C_ y+C_ )1} (3.6a)
B oB 1 po 1 pl Py p3
pg = p. {L+e [C_ +(ik,)(C_ x+C_ y+C_ )1} (3.6b)
B og 1l T, 1 ry r, r,
with
(0) (0)
Cc = Y M P Cc = M r
P, og 3 7 r, °p 3
o = yM_C', c = M_ C! (3 =1,2,3)
®3 °s Pj F3 B 5

To find the perturbed velocity components GB’ ;B we take

their components along the new axes and add them to get

Y = { !
up uOB[cos ed+el(U cosed+v s:Lned_]

<]

= uo [- sin 8

5 +el(-U sined+v cosed)]

d
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and finally using relations (3.5) we have

u = u {cos ed‘+el[cu +(ik1)(Cu

B x+C_ y+C )1} (3.6¢c)

B (o] 1 2 3
v, = u_ {-sin8_  +e,[C_ +(ik,)(C_ x+C_y+C_ )1} (3.6d)
B °B d 1l v° 1l vl vy v3
where:
. L0 (0) _. N (') (0)
Cuo u3 cosed+v3 sxned, Cvo u3 51n9d+v3 cosed
Cu. = C&.cosed+C¢_sined (3 =1,2,3)
3 J
Cvj = -C&jsin6d+CjSosed (j = 1,2,3)

Relations (3.6) give the complete set of flow quantities in
Region B expressed relative to coordinate system O XVy.

2. Perturbed Equations of Motion

In this section we derive the perturbed equations of
motion in Region C, when both wedges are oscillating (Figure
3.2). To find the form of the perturbed quantities in this
region, relative to axes O Xy, we proceed as follows.

First we assume that both bodies are stationary and
denote the (reference) steady flow quantities in Region C

by Uys Pgr Pgr Mo (Figure 3.4a). Obviously Vg = 0 for the

o]
coordinate system chosen.

Next we assume that body I is oscillating while
body II is kept stationary. Due to the oscillation of body

I we superimpose to the field quantities perturbations of

the form (Figure 3.4Db),




! - Cad T ST——
i
)
3
4 .
;
: e]
;i
Ik
’ .

Gg=-yratany =0

- '*
>
<
1 & q @ B
K
i
X : ».:' ) 1
' l—_ Body |i
1 .
T
3

i L i Fig. 3.40° Flow quantities in Region C, Both

.
PO

et : wedges are stationary. -
Kl . ’ [}
- » %
5’:' ﬂ;é
{
4

PR It 2
r
.
.

; -
. .
. s " 4
et - ;

120

— —
e
- ¢ e .
CLIEE -
. R
- e it aibeltose.
-

-, o
L' 2 dow etk ias maabh e a




>

*\

Fig. 3.4b Flow Qquantities in Region C, éody |

y s osci(loting while Body 1l is stationary.

3

}

E

b

%

| 121




~ ~ lkltl
€4y, = eqe uoUl = eluoul (3.7a)
- ~ _lkltl
g4V, = €,@ uOVl = eluov1 (3.7b)
A N ikltl
€1P; = €@ PoYMP; = €;P VM P (3.7¢c)
elpl = ele poMoRl = elpoMoRl (3.74)

Finally we assume that both bodies are oscillating.
Due to the oscillation of body II we superimpose to the field

guantities perturbations of the form (Figure 3.4c¢)

szul = eze uoU2 = ezuoU2 (3.8a)
A ~ J.kzt2
EpVvy; = E£,e uo‘V2 = ezuOV2 : (3.8b)
~ ~ ikzt2
€,p; = €,€ Pqo YM P2 = e,p, YM P2 (3.8¢)
~ ~ ik2t2
€01 = £,° PoMoRa = €2P MRy (3.84)

The flow field quantities in Region C for the last case

become (terms of order €15 slz, ezz'are neglected)

u = u, (1 + elul + € Uz) {(3.9a)
| —
: v = uo(elvl + ezvz) (3.9b)
P = p Il + yM (e,P) +e,P))) (3.9¢)
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p = po[l + Mo(elRl-kesz)] (3.94)

where the quantities Ul' Uz, v are functions of the

l’ e s 0
non-dimensional variables x and y. For small k, and k

1 2

we may expand these quantities as power series in (ik) of
the general form
x, = x'9 4 ikox™ w0 G5 =1,2) (3.10)
J 3
with X denoting U, V, P and R.

To simplify we assume that the characteristic lengths
Tl and Tz are equal and we put (3.9) into the governing
equations of motion (2.1). Using (3.10) and equating the
terms of the same order of (ik) in each of the resulting

equations we obtain

(0) (0) (0) (0)
€1%1x * £3U2 (e Py + EPy ) /My (3.1l1a)
(0) (0) (0) (0)
€1Vix * €2Vox -(elPly + €2P2y )/Mo (3.11b)
(0) (0) (0) (0) =
el(Plx - Rlx ) + ez(P2x - R2x y = 0 (3.11lc)
(0) (o) (0) (0) (0) (0), o
€1 (Vix *Viy +*MoRix ) * ey (Ugy' +Vay +MRy )=0 (3.11d)
. (0) (1) : (0),.,(0)
slﬂlklxubaul +u°Ulx )+ez(1k2)uo(02 +02x )
= -u_le, (ik )PP se_(ik)pfP /M (3.12a)
o 1 1" " 1x 2 27 2% (o) *
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el(ikl)(uoBV{O)+uOV{i))+ez(ik2)uo(V§°) vil))

= -uo[gl(ikl)P{g)+ez(ik2)P§;)]/Mo (3.12b)
el(ikl)[uOB(P(o) ROy ({1 -pll)))

+ e, (lk )u (P(o) (°)+P(l) (1)) =0 (3.12¢)

2xX

(0) (1) (1) (1)
€1 (ik )[uoBM Ry +ug (U +Vly +MORlx )1

(0)

5 (l)+V(l)+M R(l)) =0 (3.124)

+UZ 2y Q" 2x

+ sz(lkz)uo(MoR
Equations (3.11 and (3.12) are the zeroth and first-order
equations for our problem. For the case of a single oscillating
body they reduce to equations (2.9, 2.10) given in Section
IIT.A.1, by letting ¢

=0,U, =V, =P =R, =0 (body I

1 1 1 1 1
considered missing) and dropping subscripts B and2 in re-
sulting expressions.

To solve for the sixteen unknowns contained in
Systems (3.11) and (3.12) we may proceed in two steps. We
may first find the eight unknowns associated with the oscilla-

tion of body I.l

To do this we will assume that body II is
not oscillating (e2 = 0) and solve successively the above
systems of equations subject to appropriately formulated
boundary conditions for this case. Next, we will find the

! eight unknowns associated with the oscillation of body II.2

1Unknowns with subscript 1.

2Unknowns with subscript 2.
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To do this we will assume that body II is oscillating while

body I is present but stationary (el = 0) and solve successively
the resulting systems of equations subject to boundary con-
ditions appropriate for this case. The second problem has

been treated in Section II.A and we will not repeat the solu-
tion for this case. We note though that the problem should

be appropriately reformulated to account for the different
direction and magnitude of the approaching steady flow

velocity as indicated by the ratio of steady velocities

u_/u appearing in equations (3.12).
o’ “og

3. Boundary Conditions

For both wedges oscillating, let the equation of the

surface of body II be given by (Figures 3.4b, 3.4c),

S = -y + ez(x - h cosez) = 0

2

and the equation of the shock attached to boedy II be given

by (Figures 3,4),
G = -y + xtan¢ + elQl(x) + ezQéx) = 0

where Ql(x) and Qz(x) are unknown quantities associated with
the oscillations of bodies I and Il respectively and are to
be found as part of the solution.

We will formulate the boundary conditions for the
case of stationary wedge II (ez = 0).

The flow tangency condition (2.2) with V = u {1 +¢,U,,
elvl} gives
126




vi® < o At y = 0 (3.13a)
vl o At y = 0 (3.13b)

To f£find the boundary conditions across the shock we
use the Rankine-Hugoniot conditions. The procedure is given
in Appendix D and the resulting zeroth and first-order condi-
tions, after linearization and use of equation (3.10), have

the following general form

Y{0) = K, Qi(O) + K, At y = x tan¢ (3.l4a)
. (1) (0)
1 N4

At y=x tan¢ (3.14b)

K, x+K y +K
Ixx Yyy

(1)
¥ +K, Q
1 Y Yx

where Y stands for U, V, P and R and the coefficients KY’

KY ' KY , ... are known constants (functions of geametry
ang steigy flow quantities) given in Appendix D.
4. Solution

Two boundary value problems have been set up and
will be solved successively. The zeroth-order equations (3.11)
with €, = 0 and boundary conditions (3.13a) and (3.l4a) con-
stitute the first problem, which will give the steady flow
quantities behind the shock, for the case of stationary
wedges in uniform, steady supersonic/hypersonic flow. The
first-order equations (3.12) with €y = 0 apd boundary condi-

tions (3.13b) and (3.14b) constitute the second problem. Since




both problems are linear we assume that their solutions

are linear combinations of the non-dimensional coordinates x

and y.
For the first problem we assume a solution of the
form
0 0 0 0
U{ ) < u{ )x + ué )y + ué )
(0) _ (0) (0) (0)
3 Vl = v; 'x + VoY + v3
0 0 0 0
R{ - r{ )x + ré )y + ré )
0 0 0 0
(0) _ (0) (0)
Q7 T 9 Xt
Substitution of these values in the zeroth order egquations
and boundary conditions gives the following solution.
(0) _ (0) _ (0)
uy = u, = Kyy 9; (3.15a)
V](.0) = 0 (3.15b)
(0) _ (0) _ (0)
R1 = r, = KRx q, (3.15¢) |
0 _ (0 _ (0)
Py = P3 = Kp, 9; (3.154) .
K |
(D () J A 2 (3.15e)
1 1 <
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form
L 1 1 1)
Ui .- u{ )x + uél)y + u§ ’
V{l) = v{l)x + vél)y + vél)
R{l) = r{l)x + rél)y + r;l)
| eV = pMy s p{My 4 p
b
1
ol = g2 4 gy 4 gV

ditions gives the solution

U{l) = u{l)x + uél’y + ugl)
{ V{l) - vél)y
g R{l) = r{l)x + rél)y + rél)
: P{l) = pl(.l)x + p;l)
with
vy = gy W) /tan o
P{I) = Kpxd * %

129

For the second problem we assume a solution of the

Substitution in the first-order equations and boundary con-

(3.16a)

(3.16b)

(3.16¢c)

(3.164)




(1)

3 T K3 v K
(L) _ _/p(1) (0)
uy = =(P;7I/M + u, uoB/uO)
uz(l) = (-u](.l) + Kqul + WU)/tan o)
(L) _ (1)
uj = Kyxdy t Ky
(L _ (1) (0) (0)
2D o e kg + W) /tan 6
(1) _ (1)
L - .
qz - KV/KVX
u 2
(1) _ ;. %8, (0) __(0) Mo = 1)¥p
q, = 2q;7 = [m=(uy"’ -py M) -—F
o (o]
W, MZ-DE, K,
" tan ¢]/[ M * Tan )
W, = K, +K, tan ¢ +K, q{O)
XX Yy o

with Y standing for U, V, P and R.
B. UNSTEADY NON-UNIFORM FLOW PAST AN OSCILLATING TWO-
DIMENSIONAL WEDGE-—-EXPANSION SIDE
Consider a wedge (Body I), at design condition, oscillating
with small amplitude and frequency, in supersonic/hypersonic,
steady, uniform flow (Figure 3.5). This flow problem was

studied in Section III.A.l and the flow field quantities in
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Region B, expressed relative to axes O'x'y' were completely
determined. Assume now that a second wedge (Body II),
located entirely in Region B, is also oscillating with

small amplitude and frequency. Let the semi-vertex angles

of the wedges be Wl and Wz respectively and assume that their

difference VY -Wl is negative. In this case the upper side

2
of the second wedge (Region D) becomes an expansion side and
the exact solution given in the previous subsection does not
apply.
To solve the problem we adopt, as before, the following

procedure.

a) We assume that both bodies are stationary and find
the reference flow quantities inside the expansion fan
(Region C) and over the upper surface of the wedge (Region
D).

b) We assume that body I is oscillating, while body II
is kept stationary and superimpose to the steady flow gquan-~
tities in Regions C and D perturbation gquantities due to the
oscillation of body I.

c) We finally assume that body II is also oscillating and
superimpose to the already perturbed flow quantities in
Region C new perturbation quantities due to the oscillation

1

of body II. The problem is thus solved in three successive

lDisturbances due to the oscillation of body II propagate
along the characteristics and are not expected to influence
Region C except in the neighborhood of line OC.
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steps. In what follows we will restrict the analysis to
the case of a stationary wedge in oscillatory flow. The
solution can be extended to the case of an oscillating wedge
by following the procedure described in Section III.A.2.

In subsections 1 and 2 the problem is formulated and the
method of solution is presented. This method calculates the
flow quantities in the expansion fan, in a sweeping fashion
from Region B to Region D, along rays 9% = constant, with
8 increasing in small steps from S(MOB) to 6 (M) (Figure 3.6).
The procedure involves the repeated application of two basic
steps and is described in subsection 3. The solution is
approximate and becomes more exact in the limit as the number

of iterations increases.

1. Formulation of Problem--Expressing Upstream Quantities
Relative to Coordinate System Attached to Second Body

Consider steady, uniform, supersonic/hypersonic flow
past the formation of the wedges described above (Figures,
3.5, 3.6). Assume that the wedges have chord lengths Il and
Tz and are oscillating with circular frequencies wy and Wy
Cartesian coordinate systems O'X'y' and O Xy are attached to
the bodies with origins placed at the wedge apexes and axes
0'x%0x along the mean positions of the upper surfaces. Let
the steady flow quantities in Region B be given, relative
to axes 0'x'y', by uOB, ooB, poB, MOB ... and in Region D,
relative to axes OXy, by u, p, p» M, ... . Let also the

steady quantities along a ray 6 = constant in the Prandtl-

Meyer expansion fan be given, relative to axes O Xy, by
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Fig.3.6 Polar coordinate sysfem attached to

pody 11,
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Ll

Ue. Ve, De, pe, Me .+. Where

e
"

Vr cos (I'=8) + V,_, sin (I'-9)

8

cos (I'-9)

<
]

Vr sin (I'~-8) -Vs

where the angle I' and the r- and 6- velocity components
Vr and Ve were defined in Section II.A.4.b.

We assume, as in Section IV.A.l, that the perturbed
quantities in Region B have the form given by equations (3.3)
and (3.4) and note as before that this form contains as
special cases the form of the perturbed quantities behind
oscillating flat plates/wedges. To express the quantities
given by (3.3) and (3.4) relative to the coordinate system

O Xy attached to body II we use relations (3.6) with ed = WZ-W

2. Method of Solution

Assume that the change in flow direction over the
corner (Figure 3.7a) is obtained in n steps (Figure 3.7b).
Assume that the step changes in flow direction are all equal,

i.e.,

and also note that each of the line segments Dka+l k =1,2,
...sn=1l) extends to infinity. 1In the second case the single
expansion fan has been replaced by n smaller expansion fans

and the two problems are, physically, completely equivalent.
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Next we assume that the change in flow direction over

the step corners is achieved through expansion discontirui-
ties, similar in nature to hypothetical expansion shocks,
which we will call expansion fronts or, simply, fronts.
Suitably spaced lines OBl’ OBZ' oo OBn in (Figure 3.7a)
correspond to the mean positions of the fronts Fl’ F

2, oo oy

Fn emanating from corners Dl’ DZ’ ceey Dn respectively.

These lines divide Region C in subregions Bo’ Bl' Bz, co ey
Bn-l' Bn = D. The first subregion Bo is separated from
Region B by line OB, = OB and from Region B, by front F,.
Subregions Bk (k = 1,2,...,n-1) correspond to line segments
Dka+l and are separated from their adjacent subregions from

the left by fronts Fk and from the right by fronts F The

k+l°
last subregion Bn = D corresponds to the line segment
DnDn+l = DnD (actual upper surface of wedge) and is separated
from Region C by front Fo. The flow quantities in this last
subregion are required. We intend to solve for the unknown
quantities in this region by first obtaining the unknown

quantities in Regions B,, B cess Bn-l successively.

27
We observe that the original flow problem has been
replaced by a set of n identical flow problems each of which
involves the same step change in the direction of flow. We
may further observe that the assumption of "jump" step changes
in the direction of flow, via the so-called fronts, is simi-
lar to the "jump" step changes in the direction of flow via

ordinary compression shocks. Thus the two problems shown in

(Figures 3.8a and 3.8b) are mathematically identical if the
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common term discontinuity is used to denote "jump" changes
in flow direction and quantities across it.

In Section IV.A the solution to the flow problem
shown in (Figure 3.8a) was obtained. It was assumed there
that the approaching flow was oscillatory of the form given
by equations (3.3) and (3.4) and the flow guantities in Region
Bk were found relative to the coordinate system Dkxkyk‘ We
will see that the approaching flow for the dual problem shown
in (Figure 3.8b) is of the same form and thus the solution
given in Section IV.A.4 applies to the dual problem also,
provided that the appropriate geometrical data and steady
flow quantities are introduced for this case. The quantities
found in Region Bk will be expressed relative to the next
coordinate system Dk+lxk+lyk+l and will be used as input
guantities to an identical problem to give the solution for
the flow quantities in the next Region Bk+l' The procedure
can be repeated till the required gquantities in the last .
region Dn = D are found.

Physically the assumption of a "jump" expansion dis-
continuity is not accepted since such a finite discontinuity
would lead, as explained in Section II.A.3.b to a decrease
in entropy. The procedure described above, however, should
give the exact solution in the limit, as the number of step
changes in angle is increased.

3. Solution Procedure

Consider an arbitrary Region Bk (k =1,2,...,n) behind

front Fk (Figures 3,8b, 3.9). Assume that i-*th bodies are
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stationary and let the reference steady flow quantities in
this region be Upr Vo Ppr P Mk’ «+« « These quantities
can be found from the Prandtl-Meyer relations given in

Section I1.A.4.b. Expressed relative to coordinate system

Oxkyk these quantities are

= Y/ (y=1)

P P, [E(M_ )/E(M )] (3.17a)
B B

= 1/(y-1)
P = OOB[E(MOB)/E(Mk)] {(3.17b)
w = Vrk cos Ek + Vek sin Ek (3.17¢)
Ve = Vrk sinEk - Vek cos&k (3.174)
w, = [(tan re,/M)2+1107 (3.17¢)

where p, , o, , MJ , ... are the reference steady flow
B % ©“B
quantities in Region B and

_  (Y=1,0.5 _ - 2
A= (Y—_._r) ' EM) = 1+ (y-1)M%/2
§ _ _ =1, y2 _1,0.5
B, = e°-+k a7 8, = e(MOB) = tan [A(MoB 1) 1/Xx
E r = Z(n-k) = Yy -y
; *x Tk & T gtk e = ¥t
b
Vr = ¢ sin Aek, Ve = A C coOs Aek
k k
3
c = U [1+ 2 ]0.5
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Assume that body I starts oscillating and denote the
perturbed quantities in Region Bk expressed relative to

coordinate system Oxkyk by

Gk = uk(l + elUﬁ) (3.18a)
Ve = uk(elvi) (3.18b)
Py = Pl + e;yMPL) (3.18¢)
Pk = pk(l + sleRi) .184d)
where the unknown time-independent quantities U/, Vk, Pi,
Ri may be expressed, for small amplitude and frequency of
1

oscillations, as power series in (ikl) of the form

'V = ' (0) : (1)
Yk = Yk + (lkl)Yk + e

with ¥' standing for U', V', P', R'.
Assume that, with body I oscillating, the equation

of the front fe is given by
¢(Fk) = ~yp + X tanoé, +lek(xk) = 0 (3.19)

where

lk is the reduced frequency parameter associated with
the oséillations of body I and should not be confused with
the integer k.
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= - = - = r
¢k = (T 60 a) + {(a=8)k/n, r = a-+2 +P(M°B)

0 0.5

- -1 2 _
P(Mo ) = tan [A(Mo 1)

‘Sl/x - tan"1(M?® -1)
B B o

B

Assume that the approaching flow from Region Bk—l
has the following form, with flow quantities expressed rela-

tive to system Oxkyk,

Wo_y = u._,(cos 8, + € U ;) (3.20a)
Vel = Ye_pl-sin 84 + &,V ) (3.20b)
Prel = Pr-1(l + &Ry y) (3.20¢c)
Beep = Peop(l+ élpk_l) (3.204)

where ed = (WZ-WI)/n and the time independent quantities
Upgoypr Vgoyr Ry @nd P, are assumed to be known quantities
of the form

Yk-l = CYo + (ikl)(Clek-+CY2yk-+Cy3) (3.21)

with Y standing for U, V, R and P.

We observe that the problem formulated above for the
arbitrary Region B, is mathematically equivalent to the
problem considered in Section IV.A since the approaching
flow has the same form, the change in flow quantities occurs
through a discontinuity that satisfies the same equation and

therefore the same Rankine-Hugoniot boundary conditions, the
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unknown perturbed flow quantities along the surface have the
same form and should satisfy the same flow tangency boundary
condition and the same governing equations of motion. We

may therefore borrow from Section IV.A.4 the solution for our
problem as given by equations (3.15) and (3.16). As a final
step we should show that this solution expressed relative to
the coordinate system oxk+1Yk+1 {(associated with the problem
that is to be considered next in order to find the flow quan-
tities in the adjacent Regicn Bk+1) is of the form assumed

by relations (3.20) and (3.21). We see that this is indeed
the case since the solution given by equations (3.22) below
is expressed relative to the rotated system of axes oxk+1Yk+l
by equations (3.23).

The solution given by equations (3.9), (3.15) and

(3.16) is
T o= u o+ e w9 e akpu - (3.22a)
T, o= ue v+ kv (3.22b)
B, = pll+ ey iey O+ ke M) (3.22¢)
B = o il + ele[Ri(o) + (kR . (3.224)
with
TG O B L e )
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(1) (1) 1) (1) (1) (1)
Vg = VyUypr Ry = Iy X v Iy v r3y
(1) (1) (1)
Py = P X *Pj3

The same solution expressed relative to the coordinate axes

oxk+lyk+l is

- _ . (3.23a)
E uk{cosed+el[cuo+(1kl)(Culxk+l+cu2yk+l+cu3]}
Ve = uk{-sined+ellcvo+(ikl)(Cleu+l+cv2yk+l+cv3)]} (3.23Db)
P = Pl +el[Cpo+(1kl)(cplxk+l+cpzyk+l+cp3)]} (3.23c¢)
P = ok{l +sl[Cr +(ik1)(cr xk+l+cr yk+l+cr Y11} (3.234)
o 1 2 3
; with
B
F 0 1)
’ - (0) _ (
E Cu = oS edu3 ’ Cu = COS edu3 ’
: o) 3
'
¢ = (1) . (1) _ .; (1)
F Cul cos ed(cos edul + sin edu2 sin edv2 )
= —ad (1) (1) . (1)
Cu2 cos ed( sin edul + cos eduz + sin edv2 )
= —ai (0) = - ai (1)
CV sin edu3 R Cv sin Bdu3
o 3
= ; - (1) _ o (1) (1)
Cvl = gin ed[ cos edul sin edu2 + cos edvz ]
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Cvz = sinzedu{l) - sin 64C0s eduél) + coszedvél)
c, = wei®, o = wpt,

o 3
Cpl = yMk cosedp{l), sz = YMk sinedp{l),
Crl = M (cos edr{l) -sinedrél)),
Cr2 = Mk(cos edrél) + sin edr{l)):
8g = (¥,=¥;)/n

We summarize the procedure that should be followed
to find the flow field gquantities in Region B, = D below.

(a) Assume that the flow field quantities in Region B have,
relative to axes O'x'y' attached to body I, the form given
by relations (3.3) and (3.4).

(b) Express these quantities relative to axes Oxlyl, as
described in Section IV.A.l, by relations of the form given
by equations (3.6), with Bd = (Wz-wl)/n.

(¢) Use these quantities as upstream quantities for the
first problem considered and find the perturbed quantities
in Region Bl, as described in Section IV.A.4. The solution
has the form given by equations (3.22) with k = 1 and the

reference steady flow quantities involved are given by equa-

tions (3.17) with k = 1.
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(d) Express the solution relative to coordinate system
0x2y2, by using equations (3.23) with Gd = (Wz-wl)/n.

(e) Repeat step (c) to find perturbed guantities in Region
B2 and repeat step (d) to express them relative to coordinate
axes 0Ox

3¥3:

(f) Repeat step (e) till the flow quantities in Region
Bn are found. These quantities are the required gquantities
in Region D,

The procedure given is well suited for computer
applications. The program can be set up in a fairly easy

way using the formulas presented and the number of iterations

can be increased to the accuracy desired.

C. AN ALTERNATE APPROACH TO THE EXPANSION SIDE PROBLEM

In the last section the flow field gquantities over the
expansion side of the wedge were found by a series of itera-
tive calculations. The same technique can give the flow
quantities at any point (r,8) in the expansion fan region
(Figure 3.10}.

In this section another approach for finding the flow
quantities in the expansion fan is suggested. The approach
congsists, as before, of the following steps.

a) Expressing the governing equations of motion in the
expansion fan region in polar coordinates.

b) Perturbing the equations of motion.

c) Forming systems of equations that are to be solved

subject to appropriately formulated boundary conditions.
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Figure 3.10. Illustration of polar coordinate 3system
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1. Governing Equations of Motion

The governing equations of motion were derived in

Section II.A.2. They are restated below.

@)

o 7 —3
5T + pVV 0

2
+
of
1
o

IU

£y = o0
N

o

t

In polar coordinates with

v = {%, %%-?-}

VA = %[%;(rA) + E;él

D) = I )+ V3 )+Y§§—e( )
these equations become
Tlpp +5=(T) +5(T 51 +5(T) +5(Tg) g +75(Tg) = 0
FEIE g+ (T, ([T + T LT - @1 = T o
PTUT g+ (V) Tyl + (T LT g+ T 1} = - Py

-YE{?[BE‘*(V¥)3?]'*(Ve)ae}'+E{F[pg'*(vi)P;]

+ (Ve)pe} = 0
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(3.24a)

(3.24Db)

(3.24¢)

(3.244)




where p, b, V? and Ve are the density, pressure and the r-
and 8-components of velocity relative to the polar coordinate
system chosen (Figure 3.10). Bars over these quantities were
introduced to indicate their unsteady nature. Quantities t
and r respresent time and radial distance respectively and
bars were introduced to indicate that these quantities are
dimensional quantities. Subscripts t, r and 6 denote partial
differentiation.

We assume that the approaching free stream is oscilla-
tory. Let ; be a small parameter characteristic of the departure
of the free stream from its mean (average) constant-state

flow. We also denote by p, p, Gr and V, the reference steady

6

flow quantities (when € = 0) in the Prandtl-Meyer expansion
fan along a ray 8 = constant. We may express the flow quan-

tities in the expansion fan as power series of ¢ in the

following form

-~ ~

P = p+Eep+ ... (3.25a)
S = p4+ep+ ... (3.25b)
To= T_+ev_ 4 ... (3.25¢)
7, = ;’e FEv, * .. (3.25d)

-~

where the reference steady flow gquantities 5, 0 Vr and Ve

may be found from relations given in Section II.A.4.b.
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We define non-dimensional quantities as follows.

t = U_t/7, r = /T (3.26)
where 7 is a characteristic length taken equal to one unit
of length and'U°° is the average velocity of the approaching
free stream.

We substitute (3.25) in the governing equations of
motion (3.24) and retain only the zeroth and first-order

terms in €. Equating like order terms in each equation and

using (3.26) we obtain the following two systems of eguations.

(V) g *+ 5g(Vg) + (V) = 0 (3.26a)
PNV = (V)] = 0 (3.26b)
P VIV + (V)] = =, (3.26c)
YD oy, = o By (3.26d)

r(U_p 4o (V) 40 (V) 140 (V) s+ (Vo) g+0 5 (Vy)

+ p(&r)+5(vr)+ae(ve) = 0 (3.27a)
rD[Um(Vr)t+Vr(Vr)r]+p(Ve)I(Vr)e-(Ve)Ho(Ve)[(Vr)e

- W) 14V (V) =(V )] = -rp_ (3.27b)
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I (U, (Vo) +(Vg) (V) 1+p (V) [(V) g+ (V)]

+ 0V LIV +(Ve) (140 (V) [V )+ (V) o) = =pg  (3.27¢)

TP [Up +p, (V) I=YP (U p o _(V ) 11+(V,) (3B, =YB5,]

+ (Ve)[ope+ppe-Y(ppe+poe)] = 0 (3.274)

Equations (3.26) constitute the governing equations
of motion in the Prandtl-Meyer expansion fan for steady flow.
They are satisfied by the Prandtl-Meyer relations given in
Section II.A.4.b if the additional relation (Ge) = a (a
direct consequerceof the fact that in the expansion fan the
discontinuities are infinitely weak or Mach waves) is used,
as can be seen by direct substitution. Equations (3.27) con-
stitute the perturbation equations for our problem.

We assume that the unsteady parts of the flow guanti=-

ties are of the following form.1

p = pympelXt (3.28a)
o = pMretkt (3.28b)
v, = (¥,)vet"t (3.28¢)
v, o= (v velk® (3.284)

lThe real parts of the complex expressions are considered

only.
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where P, R, U and Y are time-independent quantities to be

found and k is the so-called reduced frequency defined by
k = %& with w the circular frequency of the oscillatory

=]
upstream flow. We also assume that the amplitude and fre-

quency of oscillations are small and express the time-indepn-

dent quantities P, R, U and Y as power series in (ik) of

the form |
t
p = p9 4+ e + .. (3.29a)
R = RO 4 qrrY 4+ ... (3.29b)
v = u'® 4 o 4+ ... (3.29¢)
y = vO 4 e 4 ... (3.29d)

We substitute equations (3.29) in equations (3.28)
and the resulting expressions in the perturbation equations
(3.27). Retaining terms of zeroth and first-order only and
equating like order terms in each of the equations we obtain
the following two systems of equations.

Zeroth order equations

VPP =~ (0) VR RT (0) > (0)
pM[(Vr)+(Ve)e]R + oM[(Ve)Re +r(Vr)Rr ]

(°)+Sué°)]+5(§r)[Y‘°)+ryé°)] = 0 (3.30a)

i + (Vg) [pgU




5 (VI ML(V_) = (V) IR wrpyie {045 (V) (7)) o= (T 10 )

Sy 2y o) (0)

b (V) +5 (V) [ (V) vy wr (v, )y‘°’1 = 0

SR ) +(Vy) 1RO 4yt (45 () (T )+ (T ) 51010

(0)

8)e

(3.30b)

(V) U(°)+rp(V ) (V )u‘°)+5(6r)(66)y = 0 (3.30¢)

—(Ge)ﬁyzﬂﬁep(°)+ppym[(v )P(°)+r(V )p(o)]

- (¥ ) 5iip RO -ppy L (V) R 4r (V)R IV ]

> ~= ~~ 0
First order equations

SRLT,) o+ (V) IR +3i 1 (T R{P 4r (9 )R

(1)

+rY(l)]

+ (T toug P +a,0 M 145 (V) v

= -r5ﬁUmR(°)

.o e (1), > = (1),7. 5 -
o(Ve)M[(Vr)e (Ve)]R +erMPr +°(V6)[(Vr)9

2, (1) (1)

(v yju ) - -5 (V) +p(v ) LV Y,

sV = erp @y

5 (VI RLT )+ (V) 1R P apyite (145 vy (v

+(Ge)elu(1)+p(v ) U(l)+rp(v ) (¥, )u‘l’

(1) (0)

+p(Vr)(Ve)Y = 'ero(Ve)U
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2. Boundary Conditions

The proper boundary conditions to be prescribed are
found by realizing that the problem is an initial value problem,
i.e., the upstream conditions completely determine the solu-
tion and the flow matching conditions must be imposed at a posi-
tion which differs by 0(e from that of OB and hence must be
determined as part of the solution.

3. Solution

Because of time limitations and unsuccessful choice of
test solutions we have not been able to find a solution.

We should note that once a solution is found (either
in closed form or by use of a computer program) the flow quan-
tities on the upper surface of the wedge (Region D) can be
obtained by using the method described in Section ITII.A.2. The
same method may be employed to extend the solution of the prob-
lem to the case of an oscillating wedge in oscillatory flow,
since in the last cas%, the oscillations of the body are not
expected to influence the flow field in the expansion fan

region, except in the neighborhood of line OC.
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V. SUMMARY AND RECOMMENDATIONS FOR FUTURE WORK

A. SUMMARY

The perturbation method proposed by Professor Hui, as
applied to a two-dimensional, oscillating flat plate, with
attached shock wave, at an arbitrary angle of attack, in a
steady, inviscid supersonic/hypersonic flow, has been des-
cribed in detail. For periodic oscillations of small ampli-
tude and frequency, the first-order closed form solutions for
the flow field quantities in the disturbed regions, over
both sides of the two-dimensional flat plate, have been given.
The "in-pitch" stability derivatives of the oscillating flat
plate can then be predicted and a criterion for the neutral

damping boundary can be obtained. The flat plate results

may be naturally extended to include bodies of slightly more
complicated shapes and this was done by Hui for Caret wings
and wedges [Ref. 7]. Utilizing strip theory these results
may also be extended to three-dimensional bodies of a similar
cross section and this case was described in Section III for
a flat three-dimensional wing of arbitrary planform [Ref. 5].
The "in-pitch" stability was studied and the agreement with
potential flow theory results (for zero angle of attack)
was found to be good.

The extension of the above results to bodies with cross

sections composed of curved segments or straight segments

forming downstream corners, is possible (Figures 4.1 a,b).
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In Section IV the perturbation method proposed by Hui

was extended to include the effects of periodically oscillating
upstream flow over both sides of a stationary flat plate.

The method may be readily extended to include oscillations

of the plate. The assumed form of upstream flow oscillations
includes as special cases the form of induced oscillations

in the flow field by the oscillating flat plate considered
before in steady supersonic/hypersonic flow. The solution

over the compression side is given in closed form, while

that over the expansion side is given as a series of iterative

calculations.

B. RECOMMENDATIONS FOR FUTURE WORK

The upstream oscillatory flow solutions may be combined
with the upstream steady flow solutions to study three ﬁ
general problems.

First, the induced flow field by two-dimensional bodies,
of any cross section, at arbitrary angles of attack and
attached shock waves, in steady flow. For this problem the
flow field can be obtained in steps, from leading to trailing
edge, over the straight line cross section segments (Figure
4.la). Curved segments could also be approximated by a
series of straight line segments (Figure 4.1lb).

Second, the induced flow field by a formation of bodies
with the exception of

i) Regions behind crossing shocks,

ii) Expansion fan overlapping regions,

iii) Mixed regions of above.




{a)

(b)

Figure 4.1l.

REGIONS B8

Illustration of flow solutions
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Third, the induced flow field behind three-dimensional

bodies of any cross section, utilizing the strip theory
approximation.

The dynamic stability, in pitch, of the bodies involved
in each of the above general problems, might be studied.

A closed form solution for the expansion fan problem
formulated in Section IV.C might be sought. Similarly
a closed form solution might be sought for the more general
expansion side problem considered in Section IV.B. This
solution might possibly be found by letting the step angle
8 . (representing the step change in flow direction) tend

d
to zero in the basic formulas that are iteratively used.
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APPENDIX A

PROCEDURE FOR SOLVING SHOCK BOUNDARY CONDITIONS

Let zl = L gradG
X, = I[Q% + Vi -+ gradG]
at
X, = f[ig + Vé « gradG]
3t

where © is the characteristic length chosen, G = 0 is the
equation of the shock and the subscripts 1 and 2 denote

quantities before and after the shock respectively.

Equations (2.3a-2.3c) are written with u = ;%%
°1x1 = pzx2 (A.1)
; 2 2 2 2
p1¥] *+ P2 = p,X5 + P,z (A.2)
1 P P
x% + u 1 z2 = x2 + u 2 22 (A.3)
h 1l Py 2 P

Consider a harmonic oscillation with frequency w and maximum

b angular deviation of the unsteady flow from the steady reference
; flow €.

Let ¢ = eelkt where

7

t (non-dimensional time) = — T
2
i —
k (reduced frequency) = g&

o
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e
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t: dimensional time

Uy reference velocity (in steady flow)

For the general case assume that the approaching flow is also

unsteady and let

X, = X; + Xy, X, = Xy + Xy, 25 = 2j) +elpy
Py = Pj; * tP12 Py = Py t* Py
Py = P11 * Py Py = Py Y EPy;

We substitute these values in (A.l-A.3) and retain only zeroth
and first order terms in e. Equating zeroth and first orderx

terms we get the following two systems of equations respectively.

P21%21 = P11¥11 (a.1.1)
p21[921+pil(l-u)] = pll[pll+021(l-u)l (A.2.1)
Paql x2 + Z.41] (u-l)pz xz (A.3.1)
21P11%117PP11 %11 11711 <23
Pr1X50 = P11%12 * P12%11 T P22%a1 (a.1.2)
Ppp(Ppy=keyy) = P12 (Py1*kPy1) =0, (P k*Ryy) #P5 (P 7KPSy)
, (A.2.2)
Pyp(Py1X 1 +HP11%11) = 2p; X1 1%; 5[ (u=11p7700]
2

with k = u=1 = (y+1)/(y-1).

l6l
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Equations (A.l1.1-A.3.1) give the unknown flow quantities
behind the discontinuity, for the steady reference flcw (in
terms of known flow quantities before the discontinuity) and
are also used to simplify equations (A.l1.2-A.3.2) even further.
These quantities will then be used in simplified equations
(A.1.2-A.3.2) to give the unknown flow quantities behind the
discontinuity for the unsteady flow.

To complete the system of boundary conditions across the
shock we now consider equation (2.3d) which expresses the
conservation of tangential momentum. This equation is

equivalent to
v, - T = ¥V, - T (A.4)

where T is a tangent to the surface vector, such that

VG*T = 0.

]

For a surface G xtan¢ -y +eQ(x) = 0 we will choose

this vector to be T = {1,tan ¢ +€Q'}.

.
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APPENDIX B

OSCILLATING WEDGE IN STEADY UNIFORM FLOW

For this case which was considered in Section III.A.l

(Figure 2.la),

v, = {ul,vl} = U_{cos 6,-sin 8}
v, = {uz,vz} = uo{l + ¢U, €V}
G = xtan¢ -y +eQ(x)

Then
VG = é{tan¢ +eQx,-l}, T = {1,tan ¢+eQ}

'
Z2 = 2 + €2 = 1 + tan2¢ + ¢[2 tan ¢Q_1

11 12 X

sin B8 uo

Xl = xll + €X12 = Um{m + e{cecs GQx + U—w(lk)Q]}
X, = Xop * eX,, = uo{tan ¢ + elUtan¢ -V +Q + (ik)Ql}
We also have
P, = Pj) +EPjp; = Pu * €0 Fy T Py +E€Pyy =Py +EPYMGF
py = P11 v EPp T PgtEt0 Py T Py +Epyy =P, +EPMR
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These values will be substituted in equations (A.l-A.3).

Equations (A.l1.1-A.3.l1) are considered first. From Equation

2
(A.3.1) we get after multiplying it by 99579

DWUW
e Y P
o, .. 2 2 © Y+l _. 2
pm[s:.n B + =T ;—67] y=T sin 8 (A 1.1)
«©
. Y Py 1 . Po
Setting — = and solving for 5 we get
I (y+l)M§sin28
- = 2 2 (Ao3ol-Al)
P (y=1)sin“gMS +2

From equation (A.2.1l) we get after dividing it by p_ and
p

solving for —=
Py

P P P
o - - o y+l o _ y+l
P, [1 Py Y-l]/[o°° y=1!

- Substituting for po/p°° its value from (A.3.1.Al), we get

B, 2ysin®gM2 - (y-1)

— = (A.2.1.41)

P, v+l

From equation (A.l.l) we get after multiplying it by cos ¢

P U,8in B8 = Polq

From equation (A.4) we get the following two equations equating

the zeroth and first order terms in € and using the relation

cos 9 cos ¢ -~ sin 6 sin ¢ = cos B

Ucos B = u_ cos ¢ (A.4.1)

o
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-U_sin eQx = uo(U-+tan o V) (A.4.2)

From equations (Al.l1.0) and (A4.1l) we have

Po _ tan 8

5 = Tan ¢ (A.1.1.Al1)

Equations (A.1.1.Al), (A.2.1.Al) and (A.3.1.Al) consti-~
tute the supersonic uniform wedge flow solution presented in
Section II.A.4.a.

Equations (A.l.2-A.3.2) are considered next. The time -

independent unknown functions R, P, U and V can be found in

terms of Q' and (ik)Q in the following order. From simplified
equation (A.3.2) the function R; from the known function R

and equation (A.2.2) the function P; finally from equations

(A.1.2) and (A.4.2) the functions U and V. The derivations
are lengthy and tedious and will not be included here. The ex-
pressions for the complete set of coefficients in equations

(2.11) are given in [Ref. 7] and are quoted below.

-~

P P P
(1-W)A = (1-—2)cos?e[1+=2(M2-1) tanZ¢-yW (-2 -1)] (Al.3a)
o .o o
It Pe 2 Po Po
(l-w)B = (L -=—)cos“¢[l +=— W-yW(—=1)] (Al.3b)
Pg P P
- O 4 Y= o
(1-W)C = 2KH(1 -5%)cos ¢[1--§£m3—-1)1 (Al.4a)
r o) ©
5 = E/cosz¢ (Al.4Db)
E = (A-B) cot ¢ (Al.5a)
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F = -B tan ¢ (Al.5b)
~ pm 4 pO
(1-W)G = ka(l--)cos’ely+1-(y-1)-2] (Al.6a)
o 0
J = G/cos?s (Al.6b)
MO

P
i
m
]

2 2 .
M;-l tan ¢, W = Mo sxn2¢

To illustrate the derivation procedure suggested, we
find, below, the expression for the function R and compare the
coefficients é and 3 with those given by relations (Al.éa)
and (Al.é6b) above.

We multiply equation (A.3.2) by cosz¢/oin and use relations
(A.1.4.a1), (Al.2), (A.4.1), (A.1.1.Al) and cos & = cos (B-0)

to simplify it. We finally have

3 P

_ 2 cos’¢p = y-l . _ 2
R = M  sin ¢(5; %if)[Q + (ik)Q/cos™¢])

¢

Thus the coefficients G and J found are

~ 3 P
. 2 ¢co87¢ e y=1
G ﬁo—sm(—po Y+l) (Al.7a)

~

J G/cos s (Al.7b)

The second coefficient J is expressed by the identical rela-
tions (Al.6b) and (Al.7b). It can also be seen that the
expressions (Al.6a) and (Al.7a), for the first coefficient

G, are identical by direct substitution and use of the
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relations given in Section II.A.4.a,

following additional

P _ 2+ (y-L)x’ x 2 + (y=Lix'
o (v+1)x’ ! 2yx' - (y=1)
where
x' = Misin e,
x = Misin2¢
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APPENDIX C

OSCILLATING FLAT PLATE IN STEADY UNIFORM FLOW--
EXPANSION SIDE

For this case, which was considered in Section III.A.2
(Figures 2.2a and 2.2b) we assume that there is no change

in the steady flow guantities across the front. Thus

v,o= ul{l,o} , 72 = ul{l +eU,eV}
G = xtan¢ -y +eQ(x)
Then
VG = é{tan ¢ + eQ',-1}, T = {l,tan ¢ + €Q'}
L
z2 = 2 + €2 = 1 + tan2¢ + e{2 tan$ Q']
11 12
X, = X, * eXy, = ul{tanq: + elQ' + (ik)Ql}
X, = Xy + eXyy = ul{tan ¢ + (U tano~-V + Q' + (ik)Ql}
We also have
py = Py * Py = P *te0

P, = Py * Py = Py * €PpYMyP

+ e 0

€P12 Py
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Pa = Pg1 * EPgp = Pyt EPYMIR

Equation (A.3.2) is simplified usiné equation (A.3.1l) and

becomes with P1a = 0,

X pA
-1 P21 12 12
0 = p.. (1 -1 ) (2 - =%
22 21 Y+l P11 xll le
Subsituting values given above we get
R = G'Q'" + J'(ik)Q (A2.1)
with
4 cos3¢ 2
G! = J' = G'/cos¢ (A2.1.1)

W+DM1mm¢'

Equation (A.2.2) is simplified using equation (A.2.1)
and beomces with P19 = P1p = 0

5. Pa (py Kk +Py5)
22 py; (pyk=py,)

P32

We substitute values from above and have
P = R (a2.2)

From equations (A.l1l.2) and (A.4) we get the following two

relations respectively,

Utan ¢ -V = -Mltan¢R

U+ V¢tan ¢ = 0




Solving these relations we get

VvV = A'Q' + B'(ik)Q (A2.3)
with
A' = 4cos4¢ B' = . 2 2.3
= —er— ’ = A'/cos ¢ (A2.3.1)
and also
U = E'Q' + F'(ik)Q (A2.4)
with
E' = - 4cos>¢sin o F' = E'/cos?¢ (A2.4.1)
= y+1) ’ € <.

Equations (A2.1-A2.4) give the boundary conditions
(2.16£-2.161i) and (2.17£-2.17i) when the power series expan-
sions of the time-independent quantities, given by relations
(2.8), are used. The apparent differences between the ex-
pressions given here for the boundary conditions and those
given in [Ref. 8], formulas (21) and (22), are due to the

different representations of the equation of the front.
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APPENDIX D

OSCILLATORY UPSTREAM FLOW PAST A STATIONARY WEDGE

Por this case which was considered in Section IV.A.3
(Figure 3.4b) we obtain from relations (3.6) and (3.9) with
€, = 0,
Vl = uoB{cos 84 +€,Ups=sin 64 +e,V,}
Py = Puni*eiP1y T Po *F1Po Fp (A3 1a)
, PL T P tEP12 T P *E1Po Fe (A3.1b)
i VZ = u {1+e,U,,e,V,}
Py = Ppy t€1Pyy = po+elpoYMOPl (A3.1lc)
P = Pap*E1Pp = PotE1P MRy (a3.1d)

where UB’- VB’ PB and RB have the following general form given
by (3.6a-3.6d4)

My = G iRy (Cpx 4Ty v +Cy ) (a3.0)

We also have with Tz =% and G = X tan¢ -y +6,Q,(x) =0

966 = i—{tan@i»elci,-l}, T = {1l,tan ¢+ €,9;}
2

2
zll ‘i-e:lzl2 = 1 +tan“¢ +el°2 tan¢Qi (A3.le)

2 =
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Equation (A.3.2) is simplified using equation (A.3.1l)

uOBsin B/cos ¢ (A3.1f)

| X, = uoB[U8 tan ¢-V, +cos ein+(ikl)qul/uoB] (A3.1q)
xzl = u, tand (A3.1b)

x22 = uo[Ul tan ¢ -Vi +Qi +(ik1)Ql] (A3.11)

and becomes
X P pA P Py 4P up? Py,2
A _ 12 12 12 1 21 12721 21712711
P22 = Pal? X1 1y Ty TR PR PP
] P11%11
. Using relations (A3.l) we obtain
= . R,
, R1 = KRlUB-FKszB-+KR3RB-+KR4PB-+KRSQ1-bKRG(lk)Ql (A3.2a)
3
with
KR]. = Hl sin¢/sin 8, KRz = -Hl cos ¢/sin 8,
Ky, = 1/M_+H,/2, Ky = - > 2 >
3 ° 4 M_[sin“g(y-1)M- +2]
o og
2 S
KRS chos ¢/tan B , KR6 = Hl/tan ]
P
= -1zl o
Hy 2(1 YiL 5 Y /My
%
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'r--__‘.....""‘*”f“~ T —

Equation (A.2.2) is simplified using equation (A.2.1)

and becomes

)

+
12 5,

We substitute values from (A3.1l) and get

- ! i
P, Kp UB-+KP vB+xp RB-+KP PB-+Kp Q1 +Kp (ik,)Q; (A3.2b)
1 2 3 4 5 6
where:
xpj = Hszj , j =1,2,5,6
1-+(u-1)p°/pOB
¥p, = Bofp, * M T TiDIe /6, ]
B
Kp4 = HZKR4 + 1/(YM°),
Pol{u=)+p /p, I
B
H, = =~
2 YOOB[l - (u l)pg7o°;T

From equations (A.l1.2) and (A.4) we get a system of two equa-

tions and solving for Ul and Vl we obtain

, .
vl = KVIUB+KVZVB+KV3RB+KV4PB+KVSQ1+Kv601(xkl) (A3.2¢)

where




-
s

)
- .
K = H.K + H,, K = HLK + H,/tan 6
vy 3 Rl 4 v, 3 R2 4 d
KVS = H3KR5 + H4 cos(B+¢) /tan ¢
Kv = H3KR - cosz¢[p° /p° -1]
6 6 B
H3 = Mo tan¢, H4 = sin ed_31n¢ cos ¢/sin B cos R
Uy Ky Up*Ky Vp+Ky Rp+Ky Pp+Ky Q)+Ky Q (ik) (A3.24)
1 2 3 4 5 6
with
Ky, = tan¢k, (= 3,4,6)
J J
1 K = K_ tan¢ +u_ /u_, K = (~-K_ tan¢ +u_ /u_)tan ¢
uy vy og’ o u, vy og’ o
K“S = -(KVs tan¢ +u°B sin ed/uo)
]
1 The general form of the shock boundary conditions expressed
j
by equations (A3.2) is

Yl = KYIUB+KY2VB+KY3RB+Ky4PB+KYSQi+KYGQl(ikl) (A3.3)

Using relation (3.10) the zeroth and first order boundary

conditions across the shock become

(0)
¥

- x u{%4x, v<0)+KY RB )k, P(0)+KY q: (O (A3.4a)
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